Alternating Layered Ising Models : Effects of connectivity and proximity

Helen Au-Yang and Michael E Fisher

August 6, 2013

Experiments Alternating Layered Model

Results

s=1 s=2 various s various r

Scaling

near T_{1c} scaling for a strip near T_{2c}

Enchancement

definition behavior

Conclusion

Exact solvable model

Figure : Experiments on small boxes of helium were coupled through a thin helium film.

Model

Alternating Layered Ising Model:

Figure : The model consists of infinite strips of width m_1 in which the coupling energy between the nearest neighbor Ising spins is J_1 separated by other infinite strips of width m_2 whose coupling J_2 is "weaker". ($\sigma = \pm 1$).

Relative strengths r and relative separations s

$$r = J_2/J_1 < 1, \qquad s = m_2/m_1.$$

r = 0 ($J_2 = 0$): 1-D Ising: No discontinuities

Figure : Specific heats for r = 0 : noninteracting infinite strips of finite width m_1 .

- ► J₂ = 0, the model → 1D. Specific heat not divergent, but rather has a fully analytic rounded peak.
- The temperature of the maximum T_{1max} is below the bulk critical point T_{1c} and increases as m₁ increases; it approaches T_{1c} as m₁ → ∞.
- Finite-size scaling holds.

 $r \neq 0$: 2-D lsing: $\alpha = 0, \ \beta = 1/8, \ \nu = 1.$

- Specific heats divergent at T_c logarithmically.
- *m*₁ increases, the divergence becomes a barely visible spike.
- and two rounded peaks appear and move toward the limiting values T_{1c} and T_{2c} as m₁ = m₂ increases.

Figure : Specific heats for r = 0.3 and s = 1 for $m_1 = m_2 = 2, 4, 6, 8, 12$ and 16. Dotted vertical line : T_c .

Critical Temperature $T_c(r, s)$ Critical temperature for random layered models [McCoy and Wu, Fisher]

$$2\langle\!\langle J_y\rangle\!\rangle = k_B T_c \langle\!\langle \ln \coth(J_x/k_B T_c)\rangle\!\rangle,$$

where the brackets $\langle\!\langle\cdot\rangle\!\rangle$ denote an average over the distribution, Critical temperature for alternating layered models

 $2J_1m_1 + 2J_2m_2 = k_BT_c[m_1 \ln \coth(J_1/k_BT_c) + m_2 \ln \coth(J_2/k_BT_c)].$

The critical temperature : $T_c = T_c(r, s)$

 $2J_1(1+rs) = k_B T_c[\ln \coth(J_1/k_B T_c) + s \ln \coth(rJ_1/k_B T_c)],$

Specific Heat

$$C(T; m_1, m_2; J_1, J_2) \simeq A(r, s) \ln[T/T_c(r, s) - 1]$$

Layered Ising model

Figure : The model consists of strips of length L and width n in which the coupling energy between the nearest neighbor Ising spins is J_k for $k = 1, \dots, n$, in the limit $L \to \infty$

Critical Point in the Layered Ising Models

Pffaffian method: Cyclic boundary — vertical direction; open boundary — horizontal direction. As $L \to \infty$, the free energy becomes an integral over $\theta = 2\pi/L$. Since if *L* finite, no singularity!!! The integrand is singular only at $\theta = 0$.

Amplitude

Expanding about $\theta \sim 0$: $I_s = A_1^2 (J_1/k_B)^2 [(1/T) - (1/T_c)]^2 + A_2^2 \theta^2 +,$ Alternating Layered Ising model

$$A(r,s) pprox rac{16 K_{1c}^2 s q}{\pi(s+1) \sinh[2sq/(1+s)]}, \quad q = 2 K_{1c}(1-r)m_1$$

Amplitue $A(r,s) \rightarrow 0$ exponentially as $m_1 \rightarrow \infty$.

Fibonacci Ising Models by Tracy 1988

$$S_{n+1} = S_n S_{n-1}, \quad S_0 = B, \quad S_1 = A, \quad S_2 = AB, \quad S_3 = ABA,$$

$$S_4 = ABAAB, \quad S_5 = ABAABABA, \quad S_{\infty} = \lim_{n \to \infty} S_n.$$

He shows that the amplitude is finite in the limit $n \to \infty$.

 $m_1 = m_2 = 16, r = 0.5, 0.7, 0.9$

- T_{2c} and T_c increases as r increases.
- Logarithmic divergence is visible for r = 0.7,
- and dominates entirely for r = 0.9.

Figure : Specific heats for r = 0.5, 0.7, 0.9 and $m_1 = 16$; s = 1.

Scaling behavior near T_{1c}

Figure : Plots of $\Delta C_1(J_1, J_2; T)$ (solid minus dotted, and subtract its value at T_{1c}).

Data collapse: $\Delta C_1(T) =$ $C_1(T) - C_1(T_{1c})$ are independent of m_2 .

The solid curve is the plot of the specific heat of an infinite strip of width $m_1 = 18$ and coupling J_1 when its value at T_{1c} is subtracted.

Scaling behavior of Alternating Layered Model:

▶ When $T \sim T_{1c}$, $\xi_1(T) = 1/|t_1| \gg 1$, $\xi_2(T)$ small, (ξ_i are the bulk correlation length of coupling J_i). When $m_2/\xi_2(T) \gg 1$,

$$C_1(J_1, J_2; T) = \frac{m_1 + m_2}{m_1} [C(J_1, J_2; T) - C(0, J_2; T)]$$

is independent of m_2 .

▶ In the scaling limit: $t_1 \rightarrow 0$, $m_1 \rightarrow \infty$: $x_1 = t_1 m_1$

$$\Delta C_1(J_1, J_2; T) = C_1(J_1, J_2; T) - C_1(J_1, J_2; T_{1c})$$

$$\approx C^{strip}(J_1; m_1; T) - C^{strip}(J_1; m_1; T_{1c}) \approx Q(x_1) - Q(0).$$

► Similarly $T \sim T_{2c}$, $\xi_2(T) = 1/|t_2| \gg 1$, $\xi_1(T)$ small, so that when $m_1/\xi_1(T) \gg 1$

$$C_2(J_1, J_2; T) = \frac{m_1 + m_2}{m_2} [C(J_1, J_2; T) - C(J_1, 0; T)],$$

is independent of m_1 .

▶ In the scaling limit $t_2 \rightarrow 0$, $m_2 \rightarrow \infty$ with fixed $x_2 = t_2 m_2$,

$$\Delta C_2(J_1, J_2; T) = C_2(J_1, J_2; T) - C_2(J_1, J_2; T_{2c}) \ \approx Q(-x_2) - Q(0).$$

Plots of Scaling behavior near T_{2c}

Data collapse: $\Delta C_2(T) =$ $C_2(T) - C_2(T_{2c})$ are independent of m_1 .

The solid curve is scaling function $Q(-x_2) - Q(0)$, and dashed line for $m_2 = 60$.

Figure : Plots of $\Delta C_2(J_1, J_2; T)$ for $m_2 = 16$, and $m_1 = 4, 8, \cdots, 32$.

Free Energy $f_s(J_1, J_2; T)$

$$f_{s}(J_{1}, J_{2}; T) = rac{1}{m_{1} + m_{2}} \int_{0}^{rac{1}{2}\pi} rac{\mathrm{d} heta}{\pi} \ln rac{1}{2} \Big[W + \sqrt{W^{2} - 4} \Big],$$

$$W = U_1^+ U_2^+ + U_1^- U_2^- + \frac{1}{2} (C_1 C_2 - 1) V_1 V_2,$$

The terms $U_i^+ = U^+(t_i, m_i)$ are related to the free energy $f^{\infty}(m_i; J_i; T)$ of an infinite strip of width m_i with coupling J_i in which we have introduced the basic temperature variables, t_i , via

$$t_i \approx 2K_{ic} - 2K_i \approx 2K_{ic}(T/T_{ic} - 1), \quad 2K_{ic} = \ln(\sqrt{2} + 1),$$

$$f_s^\infty(m_i; J_i; T) = rac{1}{m_i} \int_0^{rac{1}{2}\pi} rac{\mathrm{d} heta}{\pi} \ln U^+(t_i, m_i).$$

The remaining terms are related to the interaction between the strips. If $J_2 \rightarrow 0$, so that the system becomes uncoupled, we find $U_2^- = 0$ and $V_2 = 0$.

Scaling behavior of a single infinite strip of width m_1 : $U_i^+ = U^+(t_i, m_i) = \frac{1}{2}(\alpha_i^{m_i} + \alpha_i^{-m_i}) + \frac{1}{2}(\alpha_i^{m_i} - \alpha_i^{-m_i})g_i,$

$$lpha_{i}^{\pm 1} = \mathfrak{c}_{i} \pm 2Y_{i}, \quad \mathfrak{c}_{i} = 2t_{i}^{2} + 2\omega^{2} + 1, \quad g_{i} = h_{i}/Y_{i},$$

 $Y_{i} = rac{1}{2}\sqrt{\mathfrak{c}_{i}^{2} - 1} = \sqrt{(t_{i}^{2} + \omega^{2})(t_{i}^{2} + \omega^{2} + 1)},$

$$lpha_i^{m_i} = \mathrm{e}^{2m_i \, \mathrm{arcsin} \, \sqrt{t_i^2 + \omega^2}} \gg lpha_i^{-m_i} \quad \mathrm{if} \quad m_i |t_i| >> 1.$$

- ▶ When $m_1/\xi_1(T) >> 1$, the system behaves as 2D Ising; $U^+(t_1, m_1) = \alpha_1^{m_1} \frac{1}{2}(1 + g_1)$ $C^{strip}(J_1; m_1; T) = Bulk$ specific heat $+ (1/m_1)$ Surface energy.
- α = 0 and ν = 1: Near T_{1c}, it was shown that finite size scaling holds,

$$C^{strip}(J_1; m_1; T) = A_0 \ln m_1 + Q(x_1) + O(m_1^{-1}, m_1^{-1} \ln m_1),$$

 $x_1 = m_1 t_1 \propto m_1 / \xi_1(T).$

Behavior of the coupled system near T_{1c}

$$f_{s}(J_{1}, J_{2}; T) = \frac{1}{m_{1} + m_{2}} \int_{0}^{\frac{1}{2}\pi} \frac{\mathrm{d}\theta}{\pi} \ln \frac{1}{2} \Big[W + \sqrt{W^{2} - 4} \Big],$$

where
$$W = \frac{1}{2} (\alpha_{1}^{m_{1}} + \alpha_{1}^{-m_{1}}) (\alpha_{2}^{m_{2}} + \alpha_{2}^{-m_{2}}) + \frac{1}{2} (\alpha_{1}^{m_{1}} - \alpha_{1}^{-m_{1}}) (\alpha_{2}^{m_{2}} - \alpha_{2}^{-m_{2}}) G(t_{1}, t_{2}; \omega),$$

$$f_s(0, J_2; T) = rac{1}{m_1 + m_2} \int_0^{rac{1}{2}\pi} rac{\mathrm{d} heta}{\pi} \ln U^+(t_2, m_2),$$

 $\mathcal{T}\sim\mathcal{T}_{1c}$: $\xi_2(\mathcal{T})$ small. When $m_2/\xi_2(\mathcal{T})>>1$, drop $lpha_2^{-m_2}$

$$W = \alpha_2^{m_2} {}_{\frac{1}{2}} \mathcal{I}_1, \qquad U^+(t_2, m_2) = \alpha_2^{m_2} {}_{\frac{1}{2}} (1+g_2), \\ \mathcal{I}_1 = [(\alpha_1^{m_1} + \alpha_1^{-m_1}) + (\alpha_1^{m_1} - \alpha_1^{-m_1}) \mathcal{G}(t_1, t_2; \omega)].$$

 $\frac{C_1(J_1, J_2; T) \text{ independent of } m_2}{m_1 + m_2} \frac{m_1 + m_2}{m_1} [f_s(J_1, J_2; T) - f_s(0, J_2; T)] = \int_0^{\frac{1}{2}\pi} \frac{\mathrm{d}\theta}{m_1 \pi} [\ln \mathcal{I}_1 - \ln(1 + g_2)].$

Behavior of the coupled system near T_{2c}

Near T_{2c} , $\xi_1(T)$ small. When $m_1/\xi_1(T) >> 1$, drop $\alpha_1^{-m_1}$

$$W = \alpha_1^{m_1} {}_{\frac{1}{2}} \mathcal{I}_2, \qquad U^+(t_1, m_1) = \alpha_1^{m_1} {}_{\frac{1}{2}} (1+g_1), \\ \mathcal{I}_2 = [(\alpha_2^{m_2} + \alpha_2^{-m_2}) + (\alpha_2^{m_2} - \alpha_2^{-m_2}) \mathcal{G}(t_1, t_2; \omega)].$$

 $\frac{C_2(J_1, J_2; T) \text{ independent of } m_1}{m_2} \frac{m_1 + m_2}{m_2} [f_s(J_1, J_2; T) - f_s(J_1, 0; T)] = \int_0^{\frac{1}{2}\pi} \frac{\mathrm{d}\theta}{m_2\pi} [\ln \mathcal{I}_2 - \ln(1 + g_1)].$

Difference

$$\begin{split} G(t_1, t_2; \omega) &= \frac{t_1 t_2 \sqrt{(1 + t_1^2)(1 + t_2^2)}}{\sqrt{(t_1^2 + \omega^2)(1 + t_1^2 + \omega^2)(t_2^2 + \omega^2)(1 + t_2^2 + \omega^2)}} + O\left(\frac{\omega^2}{Y_1 Y_2}\right) \\ &\approx t_1 \sqrt{(1 + t_1^2)} / \sqrt{(t_1^2 + \omega^2)(1 + t_1^2 + \omega^2)} + \cdots, \text{ for } T \sim T_{1c} (t_2 > 0), \\ &\approx -t_2 \sqrt{(1 + t_2^2)} / \sqrt{(t_2^2 + \omega^2)(1 + t_2^2 + \omega^2)} + \cdots, \text{ for } T \sim T_{2c} (t_1 < 0). \end{split}$$

Enhancement $\mathcal{E}(J_1, J_2; T)$ $\mathcal{E}(J_1, J_2; T) = C(J_1, J_2; T) - C(J_1, 0; T) - C(0, J_2; \check{T})$

Figure : Plots of $\mathcal{E}(T)$ for r = 0.3 and $m_1 = 8$ and various *s*.

Enhancement $(m_1 + m_2)\mathcal{E}(J_1, J_2; T)$

The enhancement $\mathcal{E}(t)$: (a) for $m_1 = 8$ and (b) for $m_1 = 16$, but multiplied by $m_1 + m_2$. The short vertical lines locate the corresponding upper limiting critical points, T_{1c} .

Figure : Plots of the rescaled enhancement for $r = 0.3, m_1 = 8, 16, 32, 64$ showing that data collapses occur near T_{2c} .

Figure : More detail of behavior near T_{1c} as a function of $t_1 = (T/T_{1c}) - 1$. As m_1 increases, the upper maxima approach T_{1c} from below, and grow steadily in height resembling the corresponding specific heats.

0.20

0.0

0.1

height showing logarithmic

behavior.

Figure : Plots of the rescaled enhancement for r = 0.3, $m_1 = 32$, $m_2 = 8, 16, 32, 64$ showing that data collapses occur near T_{1c} .

Figure : Plots of the rescaled enhancement for r = 0.5 same as r = 0.3 for fixed m_2 , showing the plots are independent of m_1 near T_{2c} .

Figure : Plots of the rescaled enhancement for $r = 0.5, m_2 = 8, 16, 32, 64$ showing that data collapses occur near T_{1c} .

Figure : Behavior near T_{2c} are plotted as functions of $t_2 = (T/T_{2c}) - 1$. The lower maxima again approach T_{2c} from above, and grow steadily in height showing logarithmic behavior.

 $(m_1 + m_2)\mathcal{E}(J_1, J_2; T)$ for fixed $m_2 = 32$ and r = 0.7

Figure : Plots of the rescaled enhancement for r = 0.7, $m_2 = 32$ and $m_1 = 16, 24, \cdots, 64$. Data collapses occur near T_{2c} .

Figure : Detail of behavior of the rescaled enhancement near T_{1c} as a function of $t_1 = (T/T_{1c}) - 1$. As r increases, T_{2c} (denoted by dotted line) and $T_c(r, s)$ (denoted by short vertical lines) move closer to T_{1c} ,

 $(m_1 + m_2)\mathcal{E}(J_1, J_2; T_{ic})$

Figure : $(m_1 + m_2)\mathcal{E}(T_{1c}; m_1)$ plotted as function of ln m_1

Figure : $(m_1 + m_2)\mathcal{E}(T_{2c}; m_2)$ plotted as function of ln m_2

Summary and Open Questions

Summary

For $J_2 \neq 0$, there is logarithmic divergence at $T_c(r, s)$, but the amplitude decays exponentially.

In agreement with the experiments of Gasparini, the specific heats of the alternating Ising model is enhanced near T_{1c} , the upper limiting critical point; the upper maximum T_{1max} is below T_{1c} , while the lower maximum T_{2max} is above the upper limiting critical point T_{2c} — similar to the the experimental results.

Explicitly, we show under certain conditions that finite-size scaling holds in the vicinity of the upper limiting critical point T_{1c} and and also in the vicinity of the lower critical limit T_{2c} .

Open Question

Can such calculation be done in other models? Can some theoretical conclusion be drawn from these exact calculations for the *proximity effects*?