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Experiments on 4He by Gasparini an Coworkers
Experiments on 4He at the superfluid transition

Critical Point Coupling and Proximity Effects in 4He at the Superfluid Transition

Justin K. Perron* and Francis M. Gasparini†

Department of Physics, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
(Received 11 January 2012; published 18 July 2012)

We report measurements of the superfluid fraction �s=� and specific heat cp near the superfluid

transition of 4He when confined in an array of ð2 �mÞ3 boxes at a separation of S ¼ 2 �m and coupled

through a 32.5 nm film. We find that cp is strongly enhanced when compared with data where coupling is

not present. An analysis of this excess signal shows that it is proportional to the finite-size correlation

length in the boxes �ðt; LÞ, and it is measurable as far as S=�� 30� 50. We obtain �ð0; LÞ and the scaling
function (within a constant) for �ðt; LÞ in an L3 box geometry. Furthermore, we find that �s=� of the film

persists a full decade closer to the bulk transition temperature T� than a film uninfluenced by proximity

effects. This excess in �s=� is measurable even when S=� > 100, which cannot be understood on the basis

of mean field theory.

DOI: 10.1103/PhysRevLett.109.035302 PACS numbers: 67.25.dr, 64.60.an, 71.45.Gm, 74.45.+c

With low temperature superconductors, coupling and
proximity effects are manifest on the scale of the zero-
temperature correlation length �o. This leads to the famil-
iar Josephson effects in weak-link junctions and proximity
effects at a superconductor-normal metal interface [1]. One
might suppose that in 4He near the superfluid transition
temperature T� analogous effects would occur on the scale
of the temperature-dependent bulk correlation length �ðtÞ
where t ¼ j1� T=T�j. Indeed, Josephson effects have
been measured between bulk superfluids separated by
weak links of dimensions ��ðtÞ [2,3]. However, recent
measurements with arrays of 4He dots have demonstrated
that proximity effects exist over a much larger scale [4].
Here we report measurements which quantify both prox-
imity and coupling. To see both of these effects, one must
arrange for helium to be confined in contiguous regions
with different superfluid transition temperatures. In our
case, this is an array of L3 boxes separated by and linked
through a uniform thin film. We vary the coupling between
boxes by changing their separation. At large separation, the
helium in the boxes will behave as isolated dots, while at
very small separation and, hence, large coupling, the array
will behave like a two dimensional film of thickness L. The
thin film in equilibrium with the boxes will be influenced
by the boxes both in its specific heat and its superfluid
density. This influence will be present even in the limit of
large separation of the boxes when the coupling among
them is very small. Thus, even though the boxes-film
system should be considered together as a single thermo-
dynamic system, these effects can be separated and
identified.

Surprisingly, the observed effects are manifest at
distances much larger than �ðtÞ. When one considers that
this system is finite and the divergence of �ðtÞ is not
physically possible, this becomes even more surprising.
Indeed, in this system �ðtÞ must deviate from the bulk
behavior to some finite-size correlation length �ðt; LÞ

which must round off to a value & L. Our work shows
that the observed effects, although existing over distances
many times �ðt; LÞ, are governed by �ðt; LÞ. We note that
�ðt; LÞ, just like all of the thermodynamic responses near
the transition, can be described by a scaling function f such
that �ðt; LÞ ¼ �ðt;1ÞfðL=�ðt;1ÞÞ [5], or equivalently

�ðt; LÞ ¼ LXðtðL=�0Þ1=�Þ [6]. The latter form is perhaps
more intuitive because at t ¼ 0, �ð0; LÞ ¼ LXð0Þ with
Xð0Þ � 1, since �ðt; LÞ cannot become larger than L. In
contrast to low temperature superconductors, we believe
the long range effect is a reflection of the role of critical
fluctuations. Thus, these coupling-proximity effects are
new phenomena which should also be manifest in other
systems, such as magnets at the critical point.
Measurements reported in this Letter are made on 4He

confined in an array of 69 million ð2 �mÞ3 boxes spaced
2 �m edge-to-edge and connected through a 32:5�
1:2 nm thick film (see Fig. 1). The film extends along the
perimeter of the cell beyond the limits of the array of

FIG. 1 (color online). Schematic rendering, not to scale, of the
confinement cell. The cell is formed with two 50 mm diameter
silicon wafers bonded at a separation determined by the 32.5 nm
posts and ring. This oxide pattern is formed on the top wafer. The
bottom wafer has an array of ð2 �mÞ3 boxes at 2 �m separation.
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Figure : Experiments on small boxes of helium were coupled through a
thin helium film.



Model

Alternating Layered Ising Model:

J1 J2

· · · · · · · · ·
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Figure : The model consists of infinite strips of width m1 in which the
coupling energy between the nearest neighbor Ising spins is J1 separated
by other infinite strips of width m2 whose coupling J2 is “weaker”.
(σ = ±1).

Relative strengths r and relative separations s

r = J2/J1 < 1, s = m2/m1.



r = 0 (J2 = 0): 1-D Ising: No discontinuities

Figure : Specific heats for r = 0 : non-
interacting infinite strips of finite width m1.

I J2 = 0, the model
→ 1D. Specific heat
not divergent, but
rather has a fully
analytic rounded
peak.

I The temperature of
the maximum T1max

is below the bulk
critical point T1c

and increases as m1

increases; it
approaches T1c as
m1 →∞.

I Finite-size scaling
holds.



r 6= 0 : 2-D Ising: α = 0, β = 1/8, ν = 1.

Figure : Specific heats for r = 0.3 and s = 1 for
m1 = m2 = 2, 4, 6, 8, 12 and 16. Dotted vertical
line :Tc .

I Specific heats
divergent at Tc

logarithmically.

I m1 increases, the
divergence
becomes a barely
visible spike.

I and two rounded
peaks appear
and move toward
the limiting
values T1c and
T2c as m1 = m2

increases.



Critical Temperature Tc(r , s)
Critical temperature for random layered models [McCoy and
Wu, Fisher]

2〈〈Jy 〉〉 = kBTc〈〈ln coth(Jx/kBTc)〉〉,

where the brackets 〈〈·〉〉 denote an average over the distribution,

Critical temperature for alternating layered models

2J1m1+2J2m2 = kBTc [m1 ln coth(J1/kBTc)+m2 ln coth(J2/kBTc)].

The critical temperature : Tc = Tc(r , s)

2J1(1 + rs) = kBTc [ln coth(J1/kBTc) + s ln coth(rJ1/kBTc)],

Specific Heat

C (T ; m1,m2; J1, J2) ' A(r , s) ln[T/Tc(r , s)− 1]



Layered Ising model

Model

J1 · · · Jn

· · · · · · · · ·

J1 · · · Jn

n n- L
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Figure : The model consists of strips of length L and width n in which
the coupling energy between the nearest neighbor Ising spins is Jk for
k = 1, · · · , n, in the limit L→∞

Critical Point in the Layered Ising Models

Pffaffian method: Cyclic boundary — vertical direction; open
boundary — horizontal direction. As L→∞, the free energy
becomes an integral over θ = 2π/L. Since if L finite, no
singularity!!! The integrand is singular only at θ = 0.



Amplitude

Expanding about θ ∼ 0:

Is = A2
1(J1/kB)2[(1/T )− (1/Tc)]2 + A2

2θ
2 + ....,

Alternating Layered Ising model

A(r , s) ≈ 16K 2
1csq

π(s + 1) sinh[2sq/(1 + s)]
, q = 2K1c(1− r)m1

Amplitue A(r , s)→ 0 exponentially as m1 →∞.

Fibonacci Ising Models by Tracy 1988

Sn+1 = SnSn−1, S0 = B, S1 = A, S2 = AB, S3 = ABA,
S4 = ABAAB, S5 = ABAABABA, S∞ = lim

n→∞
Sn.

He shows that the amplitude is finite in the limit n→∞.



m2 = 2m1, s = 2

Figure : Specific heats for r = 0.3 and
s = 2. The dashed plots: J2 = 0 ; dotted
lines: J1 = 0. Go to uppersc

Go to uppersc

I Upper peaks below
T1c . Solid curve
above dash.

I Lower peaks above
T2c , differ from
dotted lines

I In agreement with
the experiments of
Gasparini.



m1 = m2 = 16, r = 0.5, 0.7, 0.9

Figure : Specific heats for r = 0.5, 0.7, 0.9 and
m1 = 16; s = 1.

I T2c and Tc

increases as r
increases.

I Logarithmic
divergence is
visible for
r = 0.7,

I and dominates
entirely for
r = 0.9.



Scaling behavior near T1c
Goto s2

C1(J1, J2; T )=(1 + s)[C (J1, J2; T )− C (0, J2; T )]

Figure : Plots of ∆C1(J1, J2; T ) (solid minus
dotted, and subtract its value at T1c).

Data collapse:
∆C1(T )=
C1(T )−C1(T1c) are
independent of m2.

The solid curve is the
plot of the specific heat
of an infinite strip of
width m1 = 18 and
coupling J1 when its
value at T1c is
subtracted.



Scaling behavior of Alternating Layered Model:
I When T ∼ T1c , ξ1(T ) = 1/|t1| � 1, ξ2(T ) small, (ξi are the

bulk correlation length of coupling Ji ). When m2/ξ2(T )� 1,

C1(J1, J2; T ) =
m1 + m2

m1
[C (J1, J2; T )−C (0, J2; T )]

is independent of m2.
I In the scaling limit: t1 → 0, m1 →∞ : x1 = t1m1

∆C1(J1, J2; T ) = C1(J1, J2; T )− C1(J1, J2; T1c)
≈ C strip(J1; m1; T )− C strip(J1; m1; T1c) ≈ Q(x1)− Q(0).

I Similarly T ∼ T2c , ξ2(T ) = 1/|t2| � 1, ξ1(T ) small, so that
when m1/ξ1(T )� 1

C2(J1, J2; T ) =
m1 + m2

m2
[C (J1, J2; T )−C (J1, 0; T )],

is independent of m1.
I In the scaling limit t2 → 0, m2 →∞ with fixed x2 = t2m2,

∆C2(J1, J2; T ) = C2(J1, J2; T )− C2(J1, J2; T2c)
≈ Q(−x2)− Q(0).



Plots of Scaling behavior near T2c

Figure : Plots of ∆C2(J1, J2; T ) for m2 = 16,
and m1 = 4, 8, · · · , 32.

Data collapse:
∆C2(T )=
C2(T )−C2(T2c) are
independent of m1.

The solid curve is
scaling function
Q(−x2)− Q(0), and
dashed line for
m2 = 60.



Free Energy fs(J1, J2;T )

fs(J1, J2; T ) =
1

m1 + m2

∫ 1
2
π

0

dθ

π
ln 1

2

[
W +

√
W 2 − 4

]
,

W = U+
1 U+

2 + U−1 U−2 + 1
2(C1C2 − 1)V1V2,

The terms U+
i = U+(ti ,mi ) are related to the free energy

f∞(mi ; Ji ; T ) of an infinite strip of width mi with coupling Ji in
which we have introduced the basic temperature variables, ti , via

ti ≈ 2Kic − 2Ki ≈ 2Kic(T/Tic − 1), 2Kic = ln(
√

2 + 1),

f∞s (mi ; Ji ; T ) =
1

mi

∫ 1
2
π

0

dθ

π
ln U+(ti ,mi ).

The remaining terms are related to the interaction between the
strips. If J2 → 0, so that the system becomes uncoupled, we find
U−2 = 0 and V2 = 0.



Scaling behavior of a single infinite strip of width m1:

U+
i = U+(ti ,mi ) = 1

2(αmi
i + α−mi

i ) + 1
2(αmi

i − α
−mi
i )gi ,

α±1i = ci ± 2Yi , ci = 2t2i + 2ω2 + 1, gi = hi/Yi ,

Yi = 1
2

√
c2i − 1 =

√
(t2i + ω2)(t2i + ω2 + 1),

αmi
i = e2mi arcsin

√
t2i +ω

2 � α−mi
i if mi |ti | >> 1.

I When m1/ξ1(T ) >> 1, the system behaves as 2D Ising;

U+(t1,m1) = αm1
1

1
2(1 + g1)

C strip(J1; m1; T ) = Bulk specific heat + (1/m1)Surface energy.

I α = 0 and ν = 1: Near T1c , it was shown that finite size
scaling holds,

C strip(J1; m1; T ) = A0 ln m1 + Q(x1) + O(m−11 ,m−11 ln m1),
x1 = m1t1 ∝ m1/ξ1(T ).



Behavior of the coupled system near T1c

fs(J1, J2; T ) =
1

m1 + m2

∫ 1
2
π

0

dθ

π
ln 1

2

[
W +

√
W 2 − 4

]
,

where
W = 1

2
(αm1

1 + α−m1
1 )(αm2

2 + α−m2
2 )+

1
2
(αm1

1 − α
−m1
1 )(αm2

2 − α
−m2
2 )G (t1, t2;ω),

fs(0, J2; T ) =
1

m1 + m2

∫ 1
2
π

0

dθ

π
ln U+(t2,m2),

T ∼ T1c : ξ2(T ) small. When m2/ξ2(T ) >> 1, drop α−m2
2

W = αm2
2

1
2
I1, U+(t2,m2) = αm2

2
1
2
(1 + g2),

I1 = [(αm1
1 + α−m1

1 ) + (αm1
1 − α

−m1
1 )G (t1, t2;ω)].

C1(J1, J2;T ) independent of m2

m1 + m2

m1
[fs(J1, J2; T )− fs(0, J2; T )] =

∫ 1
2
π

0

dθ

m1π
[ln I1 − ln(1 + g2)].



Behavior of the coupled system near T2c

Near T2c , ξ1(T ) small. When m1/ξ1(T ) >> 1, drop α−m1
1

W = αm1
1

1
2
I2, U+(t1,m1) = αm1

1
1
2
(1 + g1),

I2 = [(αm2
2 + α−m2

2 ) + (αm2
2 − α

−m2
2 )G (t1, t2;ω)].

C2(J1, J2;T ) independent of m1

m1 + m2

m2
[fs(J1, J2; T )− fs(J1, 0; T )] =

∫ 1
2
π

0

dθ

m2π
[ln I2 − ln(1 + g1)].

Difference

G (t1, t2;ω) =
t1t2

√
(1 + t21 )(1 + t22 )√

(t21 +ω2)(1+t21 +ω2)(t22 +ω2)(1+t22 +ω2)
+ O

( ω2

Y1Y2

)
≈ t1

√
(1 + t21 )

/√
(t21 +ω2)(1+t21 +ω2) + · · · , for T ∼ T1c (t2 > 0),

≈ −t2

√
(1 + t22 )

/√
(t22 +ω2)(1+t22 +ω2) + · · · , for T ∼ T2c (t1 < 0).



Enhancement E(J1, J2;T )

E(J1, J2; T )=C (J1, J2; T )− C (J1, 0; T )− C (0, J2; Ť )

Figure : Plots of E(T ) for r = 0.3 and
m1 = 8 and various s.

Ť (T ) = T2c − (T − T2c).
t2 → −t2



Enhancement (m1 + m2)E(J1, J2;T )

The enhancement E(t): (a) for m1 = 8 and (b) for m1 = 16, but
multiplied by m1 + m2. The short vertical lines locate the
corresponding upper limiting critical points, T1c .



(m1 + m2)E(J1, J2;T ) for fixed m2 = 32 and r = 0.3

Figure : Plots of the rescaled enhancement for
r = 0.3, m1 = 8, 16, 32, 64 showing that data
collapses occur near T2c .

Figure : More detail of behavior
near T1c as a function of
t1 =(T/T1c)−1. As m1 increases,
the upper maxima approach T1c

from below, and grow steadily in
height resembling the
corresponding specific heats.



(m1 + m2)E(J1, J2;T ) for fixed m1 = 32 and r = 0.3

Figure : Plots of the rescaled enhancement for
r = 0.3, m1 = 32, m2 = 8, 16, 32, 64 showing
that data collapses occur near T1c .

Figure : Rescaled enhancement
near T2c plotted as a function of
t2 =(T/T2c)−1. As m2 increases,
the lower maxima approach T2c

from above, and grow steadily in
height showing logarithmic
behavior.



(m1 + m2)E(J1, J2;T ) for fixed m2 = 32 and r = 0.5

Figure : Plots of the rescaled enhancement for
r = 0.5 same as r = 0.3 for fixed m2, showing
the plots are independent of m1 near T2c .

Figure : Detailed behavior of the
rescaled enhancement near T1c

plotted as a function of
t1 =(T/T1c)−1 which again show
the logarithmic behavior.



(m1 + m2)E(J1, J2;T ) for fixed m1 = 32 and r = 0.5

Figure : Plots of the rescaled enhancement for
r = 0.5, m2 = 8, 16, 32, 64 showing that data
collapses occur near T1c .

Figure : Behavior near T2c are
plotted as functions of
t2 =(T/T2c)−1. The lower
maxima again approach T2c from
above, and grow steadily in height
showing logarithmic behavior.



(m1 + m2)E(J1, J2;T ) for fixed m2 = 32 and r = 0.7

Figure : Plots of the rescaled enhancement for
r = 0.7, m2 = 32 and m1 = 16, 24, · · · , 64.
Data collapses occur near T2c .

Figure : Detail of behavior of the
rescaled enhancement near T1c as
a function of t1 =(T/T1c)−1. As
r increases, T2c (denoted by
dotted line) and Tc(r , s) (denoted
by short vertical lines) move closer
to T1c ,



(m1 + m2)E(J1, J2;T ) for fixed m1 = 32 and r = 0.7

Figure : Plots of the rescaled enhancement for
r = 0.7, m2 = 16, 24, · · · , 64 showing that data
collapses occur near T1c .

Figure : Detail behavior near T2c

as a function of t2 =(T/T2c)−1,
again showing logarithmic
divergence.



(m1 + m2)E(J1, J2;Tic)

Figure : (m1 + m2)E(T1c ; m1)
plotted as function of ln m1

Figure : (m1 + m2)E(T2c ; m2)
plotted as function of ln m2



Summary and Open Questions

Summary

For J2 6= 0, there is logarithmic divergence at Tc(r , s), but the
amplitude decays exponentially.

In agreement with the experiments of Gasparini, the specific heats
of the alternating Ising model is enhanced near T1c , the upper
limiting critical point; the upper maximum T1max is below T1c ,
while the lower maximum T2max is above the upper limiting critical
point T2c — similar to the the experimental results.

Explicitly, we show under certain conditions that finite-size scaling
holds in the vicinity of the upper limiting critical point T1c and and
also in the vicinity of the lower critical limit T2c .

Open Question

Can such calculation be done in other models? Can some
theoretical conclusion be drawn from these exact calculations for
the proximity effects?
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