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Detailed exact results on pair-correlation functions of Z-invariant models are still
only available for Ising-type models. Using these we can write and run algorithms
of polynomial complexity to obtain wavevector-dependent susceptibilities for a
variety of Ising systems. We shall compare various periodic and quasiperiodic
models, where the couplings and/or the lattice may be aperiodic, and where the
Ising couplings may be either ferromagnetic, or antiferromagnetic, or of mixed
sign, even fully-frustrated.

For the pentagrid Ising model we have developed a novel way of determining
the pair probability of local environments on a Penrose tiling, which could also
be used once more detailed results for pair correlations in e.g. the eight-vertex
model or the chiral Potts model become available.
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Outline:

• Z-invariant Ising lattices:
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Baxter’s Z-invariant inhomogeneous Ising model
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Inhomogeneous Ising model Hamiltonian:

−βH =
∑
m,n

(K̄m,nσm,nσm,n+1 + Km,nσm,nσm+1,n)

Spin σm,n = ±1, K = βJ and K̄ = βJ̄ are “horizontal” and “vertical”
couplings in the example lattice just shown.

(Rapidity lines can be moved at will, so do not have to take square lattice.)

Wavevector-dependent susceptibility χ(q):

kBTχ(q) ≡ χ̄(q) = lim
L→∞

1
L

∑
r

∑
r′

eiq·(r′−r)
[
〈σrσr′〉 − 〈σr〉〈σr′〉

]
It is the Fourier transform of the connected pair correlation function.
L is the number of lattice sites, r and r′ run through all sites, q = (qx, qy).



Parameterization in terms of elliptic functions of modulus k:
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sinh
(
2K(u1, u2)

)
= k sc(u1 − u2, k

′) = cs
(
K(k′) + u2 − u1, k

′),
sinh

(
2K̄(u1, u2)

)
= cs(u1 − u2, k

′) = k sc
(
K(k′) + u2 − u1, k

′),
k′ =

√
1 − k2, sc(v, k) = sn(v, k)/cn(v, k) = 1/cs(v, k)



K and K̄ are interchanged if we replace u1 by u2 ±K(k′) and u2 by u1: flipping
the orientation of a rapidity line j is equivalent to changing its rapidity variable
uj to uj ± K(k′).

Two-Point Correlation Functions
Only depends on elliptic modulus k and the values of the 2m rapidity variables
u1, . . . , u2m that pass between the two spins, implying the existence of an infinite
set of universal functions g2, g4, . . . , g2m, . . . such that for any permutation P and
rapidity shift v

〈σσ′〉 = g2m(k; ū1, . . . , ū2m) = g2m(k; ūP(1) + v, . . . , ūP(2m) + v).

ūj = uj if the jth rapidity line passes between the two spins σ and σ′ in a given
direction and ūj = uj + K(k′) if it passes in the opposite direction.

If two of the rapidity variables passing between the two spins differ by K(k′),
they can be viewed as belonging to a single rapidity line moving back and forth
between these two spins:

g2m+2

(
k; ū1, . . . , ū2m, ū2m+1, ū2m+1 + K(k′)

)
= g2m(k; ū1, . . . , ū2m).



Quadratic Identity for Pair Correlation
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sinh(2K1) sinh(2K2)
{
〈σx1σx2〉〈σy1σy2〉 − 〈σx1σy2〉〈σy1σx2〉

}
+

{
〈σx∗

1
σx∗

2
〉∗〈σy∗

1
σy∗

2
〉∗ − 〈σx∗

1
σy∗

2
〉∗〈σy∗

1
σx∗

2
〉∗

}
= 0,

with two arbitrary nearest-neighbor pairs of spins at the sites {x1, y1} �= {x2, y2},
and corresponding nearest-neighbor pairs of dual spins at {x∗

1, y
∗
1} and {x∗

2, y
∗
2},

and sinh(2Ki) sinh(2K∗
i ) = 1, (i = 1, 2). (Orientations as in picture.)



Restricted to Z-invariant Ising model, quadratic identity reduces to

k2sc(u2 − u1, k
′)sc(u4 − u3, k

′)
×

{
g(u1, u2, u3, u4, · · ·) g(· · ·) − g(u1, u2, · · ·) g(u3, u4, · · ·)

}
+

{
g∗(u1, u3, · · ·) g∗(u2, u4, · · ·) − g∗(u1, u4, · · ·) g∗(u2, u3, · · ·)

}
= 0,

with “· · ·” short-hand for all other rapidity variables u5, u6, · · ·, common to all
g’s and g∗’s (passing between all eight sites).

Knowing g(u, u, · · · , u) and g(v, u, · · · , u), with all or all but one of the
rapidities equal, all other g’s can be calculated by recurrence. Therefore, the
knowledge of the diagonal and next-to-diagonal pair correlations in the uniform
asymmetric (K �= K̄) square-lattice Ising model suffices.
[H. Au-Yang and J.H.H. Perk, MathPhys Odyssey 2001: Integrable Models and
Beyond, M. Kashiwara and T. Miwa, eds., (Birkhäuser, Boston, 2002), pp. 1–48.]



Summary of Findings

We can make the couplings J and/or the lattice aperiodic. Findings:

• Periodic lattice with periodic couplings: Periodic χ(q), with peaks
at sites commensurate with reciprocal lattice, becoming sharper and
sharper as T → Tc. This includes fully-frustrated cases.

• Periodic lattice with ferromagnetic couplings varying quasiperiodically:
Periodic χ(q), with peaks at reciprocal lattice sites, sharper and sharper
as T → Tc

• Periodic lattice with mixed FM and AFM couplings quasiperiodically
arranged: Periodic χ(q), with more and more incommensurate peaks
within unit cell as T → Tc

• Quasiperiodic lattice: Quasiperiodic χ(q), more and more peaks visible
closer to Tc

For Z-invariant lattices, we can evaluate χ(q) numerically to high accuracy
from the recurrence relations for the pair correlations. However, the structure
is clearer in density plots.



Generalized Fibonacci Ising lattices

We arrange couplings according to quasiperiodic sequences in horizontal,
vertical, and/or diagonal directions. We used de Bruijn’s generalized Fibonacci
sequences, assigning different couplings according to the sequence of zeros and
ones

pj(n) ≡ �γ + (n + 1)/αj� − �γ + n/αj�

with

αj ≡ 1
2
[
(j + 1) +

√
(j + 1)2 + 4

]
Ferromagnetic cases differ very little from periodic cases.

For the mixed ferro/antiferro case, the simplest examples follow adding signs
to the couplings of the Onsager square lattice model by gauge transform. We
show four examples with j = 0, · · · , 3, with j = 0 the golden ratio (Fibonacci)
case and j = 1 the silver mean case:



Generalized Fibonacci Ising lattices
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Pentagrid Ising lattice



De Bruijn’s Pentagrid
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Pentagrid in Mathematical Formulas
Regular pentagrid: no three lines have common intersection (vertex). Each

vertex is surrounded by four meshes (faces). To label meshes, choose

ζ = e2iπ/5, ζ + ζ−1 = 2 cos(2π/5) = p−1 = 1
2 (
√

5 − 1),

γ0 + γ1 + γ2 + γ3 + γ4 = 0, γ0, γ1, γ2, γ3, γ4 ∈ R
Then the lines of the jth grid in the pentagrid are given by

Gj = {z ∈ C|Re(zζ−j) + γj = kj , kj ∈ Z}, j = 0, · · · , 4.

Integer vector: z ∈ C → �K(z) ∈ Z5:

�K(z) = (K0(z), · · · , K4(z)), Kj(z) = 
Re(zζ−j) + γj�,
Map each mesh to vertex of Penrose tiling:

z → f(z) =
4∑

j=0

Kj(z)ζj
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Five different kinds of rapidity lines and shifts γj to make pentagrid regular.



Pentagrid Ising Model
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Following Korepin, each fat or skinny rhombus of Penrose tiling has two
rapidity lines associated, with rapidity uj for thejth grid. On the vertices we
put alternatingly Ising spins and dual Ising spins. The rapidity lines become
“Conway worms” (no longer straight) in the Penrose tiling.



The lengths of the four diagonals of the two rhombuses are all different.
The interactions between the spins are chosen to depend on the interparticle
spacings only, but not on the orientations. Hence,

u0 − u1 = u2 − u3 = u4 − u0 = λ + u1 − u2 = λ + u3 − u4.

From this, we find

u4 − u1 =
4λ

5
, u2 − u1 =

3λ

5
, u0 − u1 =

2λ

5
, u3 − u1 =

λ

5
.

If we let

sinh 2Kj = sj = k sc(jλ/5, k′), λ = K(k′), k′ =
√

1 − k2

then for the thick rhombus, we assign s2 to the longer diagonal and s3 to the
shorter diagonal, while for the thin rhombus s4 to the shorter diagonal and s1

to the longer one.



Pentagrid Ising lattice



The Pair Correlation Function

〈σ �Kσ �K′〉 = 〈σσ′〉[�0,···,�4]

= g(

|�0|︷ ︸︸ ︷
u′

0, . . . , u
′
0,

|�1|︷ ︸︸ ︷
u′

1, . . . , u
′
1,

|�2|︷ ︸︸ ︷
u′

2, . . . , u
′
2,

|�3|︷ ︸︸ ︷
u′

3, . . . , u
′
3,

|�4|︷ ︸︸ ︷
u′

4, . . . , u
′
4),

where u′
j = uj for rapidity lines of type j with arrows pointing to the same side

of the line joining the two spins, and u′
j = uj ± λ for rapidities with arrows

pointing to opposite sides of the line. The position of each spin is labeled by its
integer vector �K.

Shifting u′
0, . . . , u

′
4 by the same amount, depending on the region, such that

minj u′
j = 0, and using the permutation property, we reduce the calculation to

g[m4, m3, m2, m1, m0] ≡

g

( m4︷ ︸︸ ︷
4λ

5
,. . .,

4λ

5
,

m3︷ ︸︸ ︷
3λ

5
,. . .,

3λ

5
,

m2︷ ︸︸ ︷
2λ

5
,. . .,

2λ

5
,

m1︷ ︸︸ ︷
λ

5
,. . .,

λ

5
,

m0︷ ︸︸ ︷
0, . . . , 0

)
,



The Ten Regions
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Regions u′
4 u′

2 u′
0 u′

3 u′
1

I and VI u4 − λ u2 − λ u0 u3 u1

II and VII u4 − λ u2 u0 u3 u1

III and VIII u4 u2 u0 u3 u1

IV and IX u4 u2 u0 u3 u1 + λ

V and X u4 u2 u0 u3 + λ u1 + λ

Regions Signs of (
0, 
1, 
2, 
3, 
4) 〈σσ′〉[�0,···,�4] =

I & VI (+,+,+,−,−) & (−,−,−,+,+) g[|
0|, |
3|, |
1|, |
4|, |
2|]
II & VII (+,+,−,−,−) & (−,−,+,+,+) g[|
2|, |
0|, |
3|, |
1|, |
4|]
III & VIII (+,+,−,−,+) & (−,−,+,+,−) g[|
4|, |
2|, |
0|, |
3|, |
1|]
IV & IX (+,−,−,−,+) & (−,+,+,+,−) g[|
1|.|
4|, |
2|, |
0|, |
3|]
V & X (+,−,−,+,+) & (−,+,+,−,−) g[|
3|, |
1|.|
4|, |
2|, |
0|]



Enumeration/Statistics of Sites via Pentagrid
Let P (kj , kj+1) denote the parallelogram sandwiched between four grid lines

kj − 1, kj , kj+1 − 1 and kj+1 for any j. Inside, Kj(z) = kj and Kj+1(z) = kj+1.

• How many spin sites in P (kj , kj+1)?
• What values of kj+2, kj+3, kj+4 occur for these spins?

Parametrize the internal points of P (kj , kj+1) as

z =
i [ζj(kj+1−γj+1−εj+1) − ζj+1(kj−γj−εj)]

sin(2π/5)
, 0 < εj , εj+1 < 1

At the corner εj = εj+1 = 0, can derive ({x} = x − �x� = fractional part)

kj+2 = kref
j+2 ≡ 
α� − kj , α ≡ α̂(kj+1) ≡ p−1(kj+1 − γj+1) + γj + γj+2,

kj+4 = kref
j+4 ≡ 
β� − kj+1, β ≡ β̂(kj) ≡ p−1(kj − γj) + γj+1 + γj+4,

kj+3 =
{

kref
j+3 − 1 for {α} + {β} ≥ 1,

kref
j+3 for {α} + {β} < 1,

kref
j+3 ≡ 2 − 
α� − 
β� = −�α� − �β�.



The index of a mesh is defined as
∑

j Kj(z). For odd spins it has values 1 or 3,
and for even spins 2 or 4. For the reference integer vector:

∑
j kref

j = 2.
There are 24 configurations of P (kj , kj+1), depending on {α} and {β}. (The
even mesh with the reference integer vector is indicated with a dot. Only for
first one it does not occur.)
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The number of spin sites/meshes per parallelogram varies between 6 and 12,
whereas the number of odd (or even) sites varies between 3 and 7.

Which configuration occurs only depends on {α} and {β}, and is determined
by simple inequalities (linear programming):
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On the left: The 24 regions for the 24 different configurations.

On the right: The 8 regions for the 8 different odd configurations.



The golden ratio is irrational, the probabilities are proportional to the areas:

A(1) = A(2) = 5
2 − 3

2p = 1
2p−4,

A(3) = A(5) = A(6) = A(8) = A(9) = A(11) = A(12)
= A(14) = A(19) = A(20) = 5

2p − 4 = 1
2p−5,

A(4) = A(7) = A(10) = A(13) = A(15) = A(17) = A(18)
= A(21) = A(22) = A(24) = 13

2 − 4p = 1
2p−6,

A(16) = A(23) = 9p − 29
2 = 1

2p−3 − p−6.

Writing q = qx + iqy, q∗ = qx − iqy, the q-dependent susceptibility is

kBTχ(q)= lim
M→∞

1
NM2

∑
�K(z∈C)

∑
�K(z′∈C)

cos Re
{

q∗
4∑

j=0

[Kj(z′) − Kj(z)]ζj
}

×
[
〈σ �K(z)σ �K(z′)〉 − 〈σ �K(z)〉〈σ �K(z′)〉

]
=

 2χ̂o(q), (model 1),
2χ̂e(q), (model 2),

χ̂o(q) + χ̂e(q), (model 3).



• Model 1: spins on odd sites only.

• Model 2: spins only on even (dual) sites.

• Model 3: spins on all sites, factors into two independent Ising models.

Can show χ̂o(q) = χ̂e(q), so that all three models have the same χ(q).

Consider next to P = P (kj , kj+1) also P ′ = P ′(kj + 
, kj+1 + 
′), then

{α′} =
{

{α} + a for {α} + a < 1
{α} + a − 1 for {α} + a ≥ 1

}
, a = {p−1
′},

{β′} =
{

{β} + b for {β} + b < 1
{β} + b − 1 for {β} + b ≥ 1

}
, b = {p−1
}.
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Left: The eight odd spin configurations for P ′ = P (kj + 2, kj+1+3).
Right: Overlapping with configurations for P = P (kj , kj+1). The shaded area
represents the probability that P is in state m = 8 and P ′ in m′ = 2.
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Left: The sixteen even spin configurations of P (kj , kj+1).
Right: The eight odd spin configurations of P (kj +1, kj+1+1).
Note the bijection given by inversion, used to prove equality of χ(qx, qy) for odd
and even (dual) sublattices.



Density plots for (a) ξ ≈ 0.5, k = .04847302 and (b) ξ ≈ 1, k = .2363562.



Density plots for (a) k = .7018662, ξ ≈ 4 and (b) k = .8379187, ξ ≈ 8.



Density plot for k = .4912758, ξ ≈ 2.



Same for ξ ≈ 4 and ξ ≈ 8



Overlapping Unit Cells in 3 Dimensions
Petra Gummelt, motivated by physical considerations, proposed a description
of quasicrystals in terms of overlappings of decagons. Here we use a multigrid
method to produce a new example of 3-dimensional overlapping unit cells.

N.G. de Bruijn has shown that a Penrose tiling can be obtained by the
projection of the 5-d euclidean lattice Z5 onto a particular 2-d cut-plane D,
by allowing only those lattice points k in Z5 whose projections into the 3-d
orthogonal space W are inside the window of acceptance. This window is the
projection of the 5-d unit cell Cu(5) with 25 vertices into this 3-d space W. Each
facet shared by two neighboring 5-d unit cell cubes is 4-d and when projected
into 3-d space it produces a polyhedron K with 12 faces. Thus the idea of
overlapping decagons must have its extension to three dimension, by projecting
the 5-d lattice into the space W.

Choose projection operators DT = (d0, · · · ,d4) and WT = (w0, · · · ,w4) on
D and W, where

dT
j = (cos jθ, sin jθ), wT

j = (cos 2jθ, sin 2jθ, 1) = (dT
2j , 1), θ = 2π/5.



Introduce the five grids in R3 consisting of bundles of equidistant planes
defined by

x cos 2jθ + y sin 2jθ + z + γj = wT
j r + γj = kj ,

for j = 0, · · · , 4, kj ∈ Z, with rT = (x, y, z). The γj are real numbers which
shift the grids from the origin with sum

γ0 + γ1 + γ2 + γ3 + γ4 = c, c ≤ 0 < 1.

Let the integer kj be assigned to all points sandwiched between the grid
planes defined by kj − 1 and kj . Then, five integers

Kj(r) = 
wT
j r + γj�, j = 0, · · · , 4,

are uniquely assigned to every point r in R3. A mesh in R3 is now an interior
volume, enclosed by grid planes, containing points with the same five integers.

One next maps each mesh to a vertex in W by

f(r) =
4∑

j=0

Kj(r)wj = WTK(r), KT(r) = (K0(r), · · · , K4(r)).



This results in a 3-dimensional aperiodic lattice L = {f(r)|r ∈ R3}, which
is aperiodic in two directions, but periodic after five steps in the third.

A point k in Z5 satisfies the so-called mesh condition and therefore can be
mapped into L if and only if DT(k − γ) = DTλ, where γT = (γ0, · · · , γ4) and
λT = (λ0, · · · , λ4) with 0 < λj < 1 so that λ is point inside 5-d unit cube Cu(5).

Thus, the window of acceptance is the interior of the convex hull of the
points DTni, where ni are the 25 vertices of the 5-d unit cube Cu(5).

• The projection of Cu(5) with these 32 points into W is a polytope P with
40 edges connecting the 22 vertices, and with 20 faces.

• The orthogonal projection of Cu(5) into D is a decagon Q with 10 edges
connecting the 10 vertices.

Using ideas of de Bruijn, we may find out the condition for both k and
k + ni to satisfy the mesh condition—to lie both in the window of acceptance.



The projection of the 5-d unit cube Cu(5) into the orthogonal 2d space D.



There are only five different possibilities:

(1) The points inside a quadrilateral of type (a1) correspond to a polytope
intersecting with four other polytopes sharing with each a polyhedron of
type J with six faces.

(2) Points inside triangles of type (a2) or (a3) correspond to a polytope inter-
secting with five other polytopes, sharing with one of them a polyhedron K
with 12 faces and with the other four polyhedra of type J .

(3) If the point is inside triangles of type (a4) or (a6), the polytope intersects
with four other polytopes sharing with one of them a polyhedron K and
with the other three polyhedra of type J .

(4) If the point is in a triangle (a5) or (a7), the polytope intersects with five
other polytopes sharing with two of them polyhedra of type K and with the
other three polyhedra J .

(5) Finally, if the point is inside a pentagon (a8), the polytope intersects with
six other polytopes sharing with two of them a K and with the other four
a J .



Their relative frequencies are related to the ratios of their areas:

Pa1 = 2p−3, Pa2 = Pa3 = p−6, Pa4 = Pa6 = p−5,

Pa5 = Pa7 = p−6, Pa8 = p−5 + p−7.

Cases (a1) or (a2): Polytope sharing interior point with four or five neighbors.



To simplify the mesh condition, we introduce parallelepiped P (k4, k0, k1)
sandwiched between the six grid planes k4 − 1, k4, k0 − 1, k0, k1 − 1, and k1.
We find for every point r in P (k4, k0, k1):

K0(r) = k0, K1(r) = k1, K2(r) = �α� + k4 + m,

K3(r) = �β� + k1 + n, K4(r) = k4,

with some integers m and n satisfying −1 ≤ m, n ≤ 2, and

α = p−1(k0 − k1 − γ0 + γ1) + γ2 − γ4,

β = p−1(k0 − k4 − γ0 + γ4) + γ3 − γ1.

Next, we now project K(r) to D and find

DT(K(r) − γ) =
4∑

j=0

(Kj(r) − γj)dj = (m − a)d2 + (n − b)d3,

in which a ≡ {α} ≡ α − �α� and b ≡ {β} ≡ β − �β�. Thus each window of
acceptance is a decagon.



The projection of L in the xy-plane.


