
Eigenvectors for the superintegrable chiral Potts model
Helen Au-Yang and Jacques H. H. Perk

Oklahoma State University

Abstract:
Opening a series of talks on recent work on the superintegrable chiral Potts
model, we shall here first briefly review the earlier work, starting with the
discovery in 1986 of the first solution of the star-triangle (Yang-Baxter) equation
parametrized by a higher genus curve together with a discusssion of the Onsager
algebra associated with the superintegrable subcase.

There are two ways to represent the transfer matrix, using either spin
variables or bond variables. We shall use the latter approach and construct
eigenvectors in a way that resembles the old Ising model work of Onsager and
Kaufman, rather than using Bethe Ansatz methods. We shall also outline a
strategy to calculate the pair correlation in the general integrable chiral Potts
model using only the superintegrable eigenvectors.
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∗ Star-triangle equation
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• Superintegrable case and τ2 matrix
• Quantum loop algebra and Onsager algebra
• Results for the Q = 0 case and for the Q 6= 0 case
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• Combinatorial identities used
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Star-Triangle Equation for Spin Models
Onsager—in his 1944 Ising model paper—made a brief remark on an obvious

star-triangle transformation relating the model on the honeycomb lattice with
the one on the triangular lattice.

Generalizing, we introduce a lattice with spins a, b, · · · = 1, · · · , N on the lattice
sites and with interactions between spins a and b given in terms of Boltzmann
weight factors W (a, b) and W (a, b).

The integrability of the model is
expressed by the existence of spectral
variables (rapidities p, q, r, . . .) that
live on oriented lines, drawn dashed
here. One can distinguish two kinds
of pair interactions depending on the
orientations of the spins w.r.t. the
rapidity lines. Integrability requires
that the weights satisfy: !"#$%&' !"#$%&'
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These two star-triangle (Yang–Baxter) equations differ only by the negation
modulo N of the spin variables a, b, c and d, if the weights satisfy the “Potts
condition” W (a, b) = W (a − b) and W (a, b) = W (a − b). The scalar factor
R(p, q, r) can be eliminated by a suitable renormalization of the weights.



Chiral Potts solution of the star-triangle equations

Wpq(n) =
≥µp

µq

¥n nY

j=1

yq − xpωj

yp − xqωj

W pq(n) =
°
µpµq

¢n nY

j=1

ωxp − xqωj

yq − ypωj

with ω ≡ e2πi/N , n = 0, 1, . . . , N−1, and (xp, yp, µp) and (xq, yq, µq) points of
the complex chiral Potts curve (in affine representation)

µN =
k0

1− kxN
=

1− kyN

k0

with 0 ≤ k, k0 ≡
√

1− k2 ≤ 1, which follows (after suitable normalization) from
the periodicity requirements

W (N) = W (0) = 1, W (N) = W (0) = 1.



Curve Holomorphic differentials Genus

ΩxN +yN = k(1+xNyN )

µN = k0/(1− kxN )
xp−1dx

(k−xN )q/N (1−kxN )r/N
(N−1)(N2−N−1)

(1≤p<q+r, 0≤q,r≤N−1)
(N−1)(N−τ)(N+τ−1)

g=1, 10, 33, 76 for N=2, 3, 4, 5

xN +yN = k(1+xNyN )
xp−1yqdx

k − xN
(N−1)2

(1≤p,q≤N−1) g=1, 4, 9, 16 for N=2, 3, 4, 5

xN + yN = 1
xp−1dx

yq
1
2 (N−1)(N−2)

(x∼ y∼ k1/N→ 0) (1≤p<q≤N−1) g=0, 1, 3, 6 for N=2, 3, 4, 5

xN + yN = 0 None 0



Automorphisms of the chiral Potts curve
Much of the progress has been made using the four special maps

R : (x, y, µ) →
°
y, ωx,

1
µ

¢

S : (x, y, µ) →
°1
y
,
1
x

,
ω−

1
2 y

xµ

¢

T : (x, y, µ) → (ωx, ω−1y, ω−1µ)

U : (x, y, µ) → (ωx, y, µ)

which generate the group of 4N3 automorphisms that leave the curve

µN =
k0

1− kxN
=

1− kyN

k0

invariant.



Checkerboard chiral Potts as vertex model

q1

q2

p2p1
Rαβ|λµ = W p1q1(α− λ)W p2q2(µ− β)Wp2q1(α− µ)Wp1q2(λ− β)

R̂αβ|λµ =
sβ tλ
sα tµ

1
N2

NX

α0=1

NX

β0=1

NX

λ0=1

NX

µ0=1

ω−αα0+ββ0+λλ0−µµ0Rα0β0|λ0µ0



The Bazhanov–Stroganov construction

SLR

R L

S



Two direct ways to get to a vertex model

US

vertex model IRF model

Fourier

vertex models

WKW

For the “star” on the right we can take the Wu–Kadanoff–Wegner map: Each
link state is the difference of the correponding two spin states modulo N .



Elementary units used in the chiral Potts theory

W W

US

V V~

• The original horizontal and vertical
pair-interaction Boltzmann weights

• The “square” and the “star” leading
to vertex model equivalents. Using
these we can make connection (à la
Bazhanov–Stroganov) with the more
usual set-up of the representatition
theory of quantum groups.

• The two “triangles” decomposing the
“star.” Here the wiggly lines denote
Fourier and inverse Fourier. These
triangles were used in our first paper
and in the original proof of the star-
triangle equations for chiral Potts.



Commuting diagonal transfer matrices
From the star-triangle equations (in the normalization scalar factor Rpqr ≡ 1) it
follows that the diagonal transfer matrices (with periodic boundary conditions)
commute with each other and with the Hamiltonian of a quantum spin chain:

TqT̂r = TrT̂q, [H,TqT̂r] = 0.

(When p = p0 below, with half-shift S1/2 even [H,TqS1/2] = [H,S1/2T̂q] = 0.)

q

r

p'p ppp p'p'p'

W

W
W
W

W

W
W
W

W

W
W
W

W

W
W
W

Tr
^

Tq



The functional equations of Baxter–Bazhanov–Perk

Choosing r = Uj+1R−1q = q0 = (ωjyq, xq, 1/µq), we can derive the splitting

Tq T̂q0 = B(j)
pp0q X−j τj(tq) + B̄(N−j)

pp0q τN−j(ωjtq), tq ≡ xqyq.

Transfer matrix τj is made up of L-operators intertwining a cyclic and a spin
s = j−1

2 representation, the B’s are known scalars, and X is the spin shift
operator. Repeating the same process for the τj transfer matrices one obtains
their fusion relations, for j = 1, . . . , N ,

τj(tq) τ2(ωj−1tq) = z(ωj−1tq)X τj−1(tq) + τj+1(tq),

τj(ωtq) τ2(tq) = z(ωtq)X τj−1(ω2tq) + τj+1(tq),

τ0(t) = 0, τ1(t) = 1, τN+1(tq) = z(tq)X τN−1(ωtq) + (αq + ᾱq)1.

where z(t), αq and ᾱq are known scalar functions.



Free energy of the chiral Potts model (by Baxter)

Nfpq = ln

"

det
1≤i,j≤N

W (i−j)
N−1Y

n=0

Wpq(n)

#

+
N−1

2
ln

λq

λp

+ A(λp, tq)−A(λq, tp)−B(λp, λq),

A(λ, t) ≡ 1
2π

Z 2π

0
dθ

1 + λeiθ

1− λeiθ

N−1X

j=1

(N − j) ln
£
ω−1/2∆(θ)− ω1/2t

§
,

B(λ, λ0) ≡ 1
8π2

Z 2π

0
dθ

1 + λeiθ

1− λeiθ

Z 2π

0
dφ

1 + λ0eiφ

1− λ0eiφ

×
N−1X

j=1

(N − 2j) ln
£
ω−1/2∆(θ)− ω1/2∆(φ)

§
,

∆(θ) ≡
"

1 + k02 − 2k0 cos θ

k2

#1/N

, λp ≡ µN
p , tp ≡ xpyp.



Critical exponents and order parameters of chiral Potts model

In the scaling regime, the free energy behaves as (up, uq are regular functions)

f − fFZ ≡f − fc = −(N − 1)k2

2Nπ
(uq − up) cos(up + uq)

+
k2

4π2
sin(uq − up)

d(N−1)/2eX

j=1

tan(πj/N)
j

B
µ

1 +
j

N
,
1
2

∂2µk

2

∂4j/N

+ O(k4 log k), if k2 ∼ Tc − T → 0, α = 1− 2
N

.

Albertini, McCoy, Perk, and Tang conjectured that in the ordered state,

hωnσ0i = (1− k0
2)

βn
, βn =

n(N − n)
2N2

, (1 ≤ n ≤ N−1, σ0 = 0, . . . , N−1).

This was finally proved by Baxter 17 years later using functional equations.



Baxter’s Z-invariance for correlation functions

q0

q6
q5
q4
q3
q2
q1

q7

p0 p6p5p4p3p3p2p1 p9p8p7

A

B

C

Pair correlation functions only
depend on values of rapidities
passing in the same direction
between spins s ≡ ωσ and s0.

This may require us to flip the
direction of some rapidities by
the automorphism q → Rq,
given by xq → yq, yq → ωxq.

Find universal functions g(n)
2m ,

(n = 1, · · · , N −1, as sN = 1).

hsn
As−n

B i = g(n)
6 (q1, q2, q3, q4, q5, q6)

hsn
As−n

C i = g(n)
8 (q1, q2, q3, q4, p1, p2, p3, p4)

hsn
Cs−n

B i = g(n)
6 (q5, q6,Rp1,Rp2,Rp3,Rp4)



Corollary

The Z-invariance property means that we should be able to calculate correlation
functions in the bulk of an infinite general integrable chiral Potts model from
special correlations in the much simpler superintegrable case.

For example, a pair correlation function only depends on modulus k and
the rapidities passing between the spins. So take an infinite square lattice with
special vertical rapidities p and p0 alternatingly, but with more general horizontal
rapidities q, r, · · ·. Choose the two spins within faces in the same vertical column.
Such a correlation hsn

10s
−n
1R i is independent of p and p0.



General superintegrable chiral Potts model

Assume alternating vertical rapidities xp0 = yp, yp0 = xp, µp0 = 1/µp:



Quantum chiral Potts spin chain hamiltonian
From the transfer matrix, taking the usual logarithmic derivative, we find

H =
LX

j=1

N−1X

n=1

"

k0
ei(2n−N)ϕ̄/N

sin(πn/N)
°
Xj

¢n +
ei(2n−N)ϕ/N

sin(πn/N)

≥
ZjZ

†
j+1

¥n
#

,

(up to an overall constant factor). The spin operators are

Xj ≡ IN ⊗ IN ⊗ · · · ⊗X⊗ · · · ⊗ IN , Zj ≡ IN ⊗ IN ⊗ · · · ⊗ Z⊗ · · · ⊗ IN ,

X ≡





0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . 1 0




, Z ≡





1 0 0 . . . 0 0
0 ω 0 . . . 0 0
0 0 ω2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . ωN−2 0
0 0 0 . . . 0 ωN−1




.

and cosϕ = k0 cos ϕ̄, as e2iϕ/N =
ω1/2xp

yp
, e2iϕ̄/N =

ω1/2xpµp
2

yp
.



Superintegrability and Onsager algebra
The special choices p = p0 lead to greater symmetry.

The 3-state case was noticed by Howes, Kadanoff, and den Nijs. The special
N -state case was first derived by von Gehlen and Rittenberg, who wrote the
hamiltonian as H = A0 − k0A1 and then applied the Dolan–Grady conditions

[A0, [A0, [A0, A1]]] ∝ [A0, A1], [A1, [A1, [A1, A0]]] ∝ [A0, A1].

These conditions were shown by Perk (1987) and Davies (1990) to be equivalent
to the existence of an Onsager loop algebra

[Aj , Ak] = 4Gj−k, [Gm, Al] = 2Al+m − 2Al−m, [Gj , Gk] = 0.

This means that we have both star-triangle (Yang–Baxter) integrability and
Onsager integrability. Therefore we called this the “superintegrable” case. In
the two-dimensional model, the vertical rapidities then are all equal and satisfy

xN
p = yN

p =
1− k0

k
, µ2N

p = 1 . Davies also proved the existence of a minimal

n and coefficients αk = ±α−k, all with same sign, (k = −n, . . . , n), such that



nX

k=−n

α±kAk−l = 0,
nX

k=−n

α±kGk−l = 0, f(z) ≡
nX

k=−n

αkzk+n.

If all zeros distinct and none equal ±1,† then z−j = 1/zj , j = 1, . . . , n, and

Am = 2
Pn

j=1(z
m
j E+

j + z−m
j E−

j ), Gm = 2
Pn

j=1(z
m
j − z−m

j )Hj

with [E+
j , E−

k ] = δjkHk, [H+
j , E±

k ] = ±2δjkE±
k .

To invert this, define

f±l (z) ≡
nY

j=1
j 6=l

≥ z − z±j

zl − z±j

¥ nY

j=1

≥ z − z∓j

zl − z∓j

¥
=

nX

k=−n

βl±,kzk+n

with property f±l (z±m) = δlm, f±l (z∓m) = 0, leading to

E±
l =

1
2
z±n
l

nX

k=−n

βl±,kAk, Hk =
nX

l=−n

nX

m=−n

βk+,lβk−,mGl−m.

† Davies also says what happens if this is not true.



Ising-like approach to correlation functions?

What we may hope for without using Bethe Ansatz methods:

• Algebraic derivation of free energy (ground state energy)

• Algebraic derivation of the order parameter(s) [Helen’s talks]

• Form factor expansions for correlation functions and susceptibilities

• Integrable recurrence relations for correlation functions

• Painlevé-type differential and difference equations

A recent paper using this for the 2d Ising model and 1d transverse Ising chain:

JHHP and H. Au-Yang, J. Stat. Phys. 135 (2009) 599–619 [arXiv:0901.1931].

Another Ising application is the derivation of long high- and low-temperature
series for Ising susceptibilities on the triangular, honeycomb and Kagome lattices
(joint work in progress with B.G. Nickel, A.J. Guttmann, and Y.-B. Chan).



Correlation functions and order parameters

First we define the transfer matrices (periodic boundary conditions)

pp

q

r

pppp p

Tq

Tr̂

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

Tq = T (xq, yq)σσ0 =
LY

J=1

Wpq(σJ − σ0J)W p0q(σJ+1 − σ0J),

T̂r = T̂ (xr, yr)σ0σ00 =
LY

J=1

W pr(σ0J − σ00J)Wp0r(σ0J − σ00J+1).



We define the vertical pair correlation functions, between spins in the first
column separated by 2` horizontal rapidities, as

g2`(r; k; q1, · · · , q2`) =
1
Z

X

{σ}

ωr(σ1,0−σ1.2`)
Y

all W bonds

Wpq(σ, σ0)W p̄q(σ, σ00),

where r = 1, . . . , N − 1. For Ising we only have r = 1. We have suppressed the
values of the vertical rapidities in our notations. Assuming periodic boundary
conditions,

g2`(r; k; q1, · · · , q2`) =
1
Z

Tr
{σ}

∑
Z r

1

µ Ỳ

j=1

Tq2j−1 T̂q2j

∂
Z†r

1

µ MY

j=`+1

Tq2j−1 T̂q2j

∂∏
,

with Z = Tr
{σ}

µ MY

j=1

Tq2j−1 T̂q2j

∂
. Once the thermodynamic limit L,M → ∞ is

taken, this should give the most general pair correlations on infinite Z-invariant
lattices.



We defined operators Z and X acting as Z|σi = ωσ|σi and X|σi = |σ+1i and L
pairs of copies Zj and Xj , acting in the jth column, (j = 1, . . . , L). The transfer
matrices are invariant under the spin shift operator

X ≡
LY

j=1

Xj , X|σ1, . . . , σLi = |σ1+1, . . . , σL+1i.

The transfer matrix elements only depend on differences nj = σj−σj+1. So,
write

|σ1, . . . , σLi ≡ |{σj}i ≡ |σ1, {nj}i, nj = σj−σj+1,
LX

j=1

nj = 0,

and define a new basis

|Q ; {nj}i ≡ N−1/2
N−1X

σ1=0

ω−Qσ1 |σ1, {nj}i.

Then

X |σ1, {nj}i = |σ1+1, {nj}i, so that X |Q ; {nj}i = ωQ|Q ; {nj}i .



Using this (Fourier-transformed) basis, we find the transfer matrix elements

hQ ; {n0j}|T |Q ; {nj}i =
1
N

N−1X

σ01=0

N−1X

σ1=0

ωQ(σ01−σ1)hσ01, {n0j}|T |σ1, {nj}i.

As

hσ01, {n0j}|T |σ1, {nj}i = T (σ01−σ1, {n0j}, {nj}) = T (m, {n0j}, {nj}),

is a function of differences only, (and m ≡ σ01−σ1), we obtain

hQ ; {n0j}|T |Q ; {nj}i =
N−1X

m=0

ωmQ T (m, {n0j}, {nj}) ≡ TQ({n0j}, {nj}).

In the spin-shift Q sector the transfer matrices only depend on bond (link)
variables. The inverse relation is

h{σ0j}|T |{σj}i =
1
N

N−1X

Q=0

ωQ(σ1−σ01)TQ({n0j}, {nj}).



Matrix products can also be rewritten:

h{σ0j}|T T̂ |{σj}i =
N−1X

σ001 =0

X

{n00}

h{σ0j}|T |{σ00j }ih{σ00j }| T̂ |{σj}i

=
1

N2

N−1X

σ001 =0

X

{n00}

N−1X

Q=0

N−1X

Q0=0

ωQ(σ001−σ01)TQ({n0j}, {n00j })ωQ0(σ1−σ001 )T̂Q0({n00j }, {nj})

=
1
N

X

{n00}

N−1X

Q=0

N−1X

Q0=0

ωQ(σ1−σ01)δQ,Q0TQ({n0j}, {n00j })T̂Q0({n00j }, {nj})

=
1
N

X

{n00}

N−1X

Q=0

ωQ(σ1−σ01)TQ({n0j}, {n00j })T̂Q({n00j }, {nj})

=
1
N

N−1X

Q=0

ωQ(σ1−σ01)h{n0j}|TQT̂Q |{nj}i.



For the pair correlation function we find similarly (in the special case of equal
horizontal rapidities and using h{σ}|Z r

1 |{σ}i = ωrσ1):

g2`(r; k; q, · · · , q)

=
1
Z

Tr
{σ}

∑
Z r

1

µ Ỳ

j=1

Tq2j−1 T̂q2j

∂
Z†r

1

µ MY

j=`+1

Tq2j−1 T̂q2j

∂∏

=
1
Z

N−1X

Q=0

Tr
{nj}

nh
TQ−r(xq, yq)T̂Q−r(xq, yq)

i`h
TQ(xq, yq)T̂Q(xq, yq)

iM−`o

Let the eigenvectors of the transfer matrices be given by

TQ(xq, yq)T̂Q(xq, yq)|YQ
j i =

°
∆Q

j

¢2|YQ
j i, hYQ

i |Y
Q
j i = δi,j ,

where ∆Q
j denotes the jth eigenvalue, and let ∆Q

max be the maximum eigenvalue
of the transfer matrix TQ.



In the limit of an infinite number M of rows, the partition function becomes

Z =
N−1X

Q=0

(∆Q
max)

2 → N(∆0
max)

2, as L,M →∞,

as ∆Q
max for 0 ≤ Q ≤ N−1 are asymptotically degenerate as L →∞. Therefore,

g2`(r; k; q, · · · , q) =
1
N

N−1X

Q=0

JX

j=1

∑ ∆P
j

∆0
max

∏2`

hYQ
max|YP

j ihYP
j |YQ

maxi,

where J = NL−1, L →∞, and P ≡ Q− r.
In the limit ` → ∞, the pair correlation becomes the product of order

parameters, i.e.

hωrσ1ihω−rσ1i =
1
N

N−1X

Q=0

hYQ
max|YP

maxihYP
max|YQ

maxi, P ≡ Q− r.



Transfer matrices of “double” superintegrable model
(Superintegrable in both horizontal and vertical directions)

xp0 = yp, yp0 = xp, µp0 = 1/µp and xq0 = yq, yq0 = ω2xq, µq0 = 1/µq:

pp

q

q

pppp p

Tq

Tq̂

Their product is block triangular, with diagonal blocks being the
superintegrable τ2 and τN−2 model transfer matrices.



The star weight and the four nonzero τ2 weights

pp

q

q

ba

d c

e

0

n ba

ba
n

0

n+1

1

b 1

0

n ba

a

n 1
a 1

n ba

b

01

n ba

n
b 1a 1

11
U (2)(a, b, c, d)

xq0 = yq, yq0 = ω2xq

(p, p0 arbitrary if not
superintegrable) Horizontal link variables: n = a− b (mod n)



Omitting irrelevant factor details, collect the four values in a matrix

U(2) =
µ

1− ωn+1t −ωt(1− ωn+1)
1− ωn ω(ωn − t)

∂
, t ≡ tq

tp
=

xqyq

xpyp
, n = a− b

We can also keep more of the structure making the elements operators:

U(2) =
µ

1− ωtZ −ωt(1− ω)f
(1− ω)e ωZ− ωt1

∂
, f ≡ 1− Z

1− ω
X, e ≡ X−1 1− Z

1− ω

with operators defined on the basis { |ni, n = 0, . . . , N−1}:

Z |ni = ωn |ni, X |ni = |n + 1i, |Ni ≡ |0i

f |ni = [n + 1] |n + 1i, e |ni = [n] |n− 1i

[n] ≡ 1− ωn

1− ω
, f |N − 1i = e |0i = 0



Monodromy operator and transfer matrix τ2

Define the operators Zi, Xi, ei, fi and U(2)
i for link i = 1, . . . , L by

U(2)
i = 1⊗ 1⊗ · · · ⊗U(2)

|{z}
ith

⊗ · · · ⊗ 1, etc.

Then the monodromy operator is

U(tq) =
LY

i=1

U(2)
i =

µ
A(tq) B(tq)
C(tq) D(tq)

∂
=

LX

j=0

(−ωt)j

µ
Aj Bj

Cj Dj

∂

expanding out the polynomial tq dependence (t ≡ tq/tp).

We have many quadratic relations as U(tq) satisfies a Yang–Baxter
equation with six-vertex model R-matrix intertwiner and

τ2(tq) = tr
2×2

U(tq) = A(tq) + D(tq)

However:



We went from spin variables σi to link variables ni = σi − σi+1, which are
invariant under the spin shift σi → σi + 1 for all i. Therefore, τ2(tq) has to be
block-cyclic. Thus it is better to change basis, i.e. doing spin-Fourier transform,
making all matrices block-diagonal, with N blocks, sectors Q = 0, . . . , N − 1:

τ2(tq)|Q = A(tq) + ω−QD(tq)

(using the same letters A, B, C, D, but now for the blocks). Coefficients:

A0 = DL = 1, CL = B0 = 0, AL = D0 ω−L =
LY

j=1

Zj ,

BL = (1− ω)
LX

j=1

µ j−1Y

m=1

Zm

∂
fj , C0 = (1− ω)

LX

j=1

ωj−1

µ j−1Y

m=1

Zm

∂
ej ,

B1 = (1− ω)
LX

j=1

ωL−jfj

µ LY

m=j+1

Zm

∂
, CL−1 = (1− ω)

LX

j=1

ej

µ LY

m=j+1

Zm

∂
.

Periodic boundary conditions means σL+1 = σ1 ⇐⇒
P

ni = 0 mod N ,
which is a restriction on the space of link states |{ni}i.



Quantum loop algebra for Q=0

Each term in the operators B1 and BL raises only one of the nj ’s to nj +1,
whereas each term in C0 and CL−1 lowers only one nj ’s to nj − 1. To maintain
cyclic boundary conditions we must keep

P
nj = `N , so we need N of them.

Define
B(n)

1 =
(B1)n

[n]!
, B(n)

L =
(BL)n

[n]!
,

C(n)
0 =

(C0)n

[n]!
, C(n)

L−1 =
(CL−1)n

[n]!
,

with [n]! = [n] · · · [2] [1], where [n] ≡ (1− qn)/(1− q)|q=ω and n = 1, . . . , N−1.
This can also be defined this way for n = N using a limit process q = rω, r ↑ 1.

For L = `N we find the loop algebra L(sl2) generated by

x−0 =
B(N)

L

(1− ω)N
, x−1 =

B(N)
1

(1− ω)N
,

x+
0 =

C(N)
0

(1− ω)N
, x+

−1 =
C(N)

L−1

(1− ω)N
.



We then have the L(sl2) loop algebra

hm = [x+
m−`,x

−
` ], x±m+` = ∓1

2 [hm,x±` ], `,m ∈ Z ,

after proving the consistency relations (including Serre relations)

h0 = [x+
0 ,x−0 ] = [x+

−1,x
−
1 ],

[h0,x
−
i ] = 2x−i , [h0,x

+
−i] = −2x+

−i

[x+
−i, [x

+
−i, [x

+
−i,x

−
j ]]] = 0, [x−i , [x−i , [x−i ,x+

−j ]]] = 0, i 6= j,

with i, j = 0, 1. (Details of the proof can be copied from Deguchi.)
Next define

(x±m)(n) ≡ (x±m)n

n!
, for n ≥ 0,

(x±m)(n) ≡ 0, for n < 0,

with ordinary factorials, not q=ω factorials. Then:



(x−0 )(n) =
X

{0≤νm≤N−1}
ν1+···+νL=nN

LY

m=1

fνm
j

[νm]!
Z

P
`>m

ν`

m ,

(x+
0 )(n) =

X

{0≤νm≤N−1}
ν1+···+νL=nN

LY

m=1

Z
P

`>m
ν`

m
ωmνm eνm

j

[νm]!
,

(x−1 )(n) =
X

{0≤νm≤N−1}
ν1+···+νL=nN

LY

m=1

ω−mνm fνm
j

[νm]!
Z

P
`<m

ν`

m ,

(x+
−1)

(n) =
X

{0≤νm≤N−1}
ν1+···+νL=nN

LY

m=1

Z
P

`<m
ν`

m
eνm

j

[νm]!
,

where the summations are over the L variables νm, for m = 1, · · · , L.
(These identities have been used over and over again, reducing much of the

calculation to new summation identities.)



The Drinfeld polynomial
We have three doubly-infinite sequences of finite-dimensional operators
hn, x+

n and x−n satisfying

hm = [x+
m−`,x

−
` ], x±m+` = ∓1

2 [hm,x±` ], `,m ∈ Z .

Therefore, there must exist linear relations
rX

j=0

Λjhj+n = 0,
rX

j=0

Λjx
+
j+n = 0,

rX

j=0

Λjx
−
j+n = 0.

We collect the coefficients in the “Drinfeld polynomial”

P (z) =
rX

j=0

Λjz
j =

rY

j=1

(z − zj), with Λr−j = Λj for Q = 0.

From Baxter’s work we can conclude, also for Q 6= 0,

P (tN ) =
t−Q

N

N−1X

n=0

ω−nQ (1− tN )L

(1− ωnt)L
.



This can also be found as follows: The coefficients for Q = 0 are given by

Λn =
X

{0≤νm≤N−1}
ν1+···+νL=nN

1 ≡ λnN , λj ≡
X

{0≤νm≤N−1}
ν1+···+νL=j

1,

and can be extracted from the generating function

Q(t) =
LY

m=1

√
N−1X

νm=0

tνm

!

=
(1− tN )L

(1− t)L
,

where we have inserted tνm in each of the L sums in λj to arrive at Q(t). The
condition ν1+· · ·+νL =nN means Λn is the coefficient of tnN in the expansion
of Q(t). This way we find explicitly

Λn = Λr−n =
nX

m=0

(−1)m

µ
L

m

∂
(L)nN−mN

(nN −mN)!
, for Q = 0.

Picking every Nth coefficient of Q(t), beginning with tQ, we find the Drinfeld
polynomials for Q = 0, . . . , N − 1, of the previous page.



The factorization into sl2 algebras
Introduce the polynomials

fj(z) =
Y

6̀=j

z − z`

zj − z`
=

r−1X

n=0

βj,nzn, fj(zk) = δj,k ,

where the βj,n are elements of the inverse of a Vandermonde matrix,
r−1X

n=0

βj,nzn
k = δj,k,

rX

k=1

zn
k βk,m = δn,m for 0 ≤ n ≤ r − 1.

Then, following Davies, we can solve the linear dependence as

x∓n = ±
rX

m=1

z−n
m E±

m, hn =
rX

m=1

z−n
m Hm,

and invert it as

E±
m = ±

r−1X

n=0

βm∗,nz `
m x∓n+`, Hm =

r−1X

n=0

βm∗,nz `
m hn+`, m = 1, . . . , r ,



where m∗ is the index for which zm∗ = 1/zm. It is easy to show

[E+
m,E−n ] = δm,nHm, [Hm,E±

n ] = ±2δm,nE±
m,

and all other commutators zero: We have r independent sl(2)’s.

We have to continue from here tomorrow. We have found a factorization of
the algebra for the Q = 0 ground state sector. For the Ising case this corresponds
to a major part of Onsager’s 1944 paper. Several things remain to be done: To
obtain the corresponding eigenvectors of the transfer matrix, we need to find
rotations à la Onsager. We will also derive results for the Q 6= 0 sector, together
with combinatorial identities.

End of part 1


