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Abstract:
Opening a series of talks on recent work on the superintegrable chiral Potts
model, we shall here first briefly review the earlier work, starting with the
discovery in 1986 of the first solution of the star-triangle (Yang-Baxter) equation
parametrized by a higher genus curve together with a discusssion of the Onsager
algebra associated with the superintegrable subcase.

There are two ways to represent the transfer matrix, using either spin
variables or bond variables. We shall use the latter approach and construct
eigenvectors in a way that resembles the old Ising model work of Onsager and
Kaufman, rather than using Bethe Ansatz methods. We shall also outline a
strategy to calculate the pair correlation in the general integrable chiral Potts
model using only the superintegrable eigenvectors.

Simons Workshop, Stony Brook University, January 18 & 19, 2010



Eigenvectors for the superintegrable chiral Potts model II

Helen Au-Yang and Jacques H. H. Perk
Oklahoma State University

Topics discussed in both talks:
• Chiral Potts model

∗ Star-triangle equation
∗ Correlation function set up

• Superintegrable case and τ2 matrix
• Quantum loop algebra and Onsager algebra
• Results for the Q = 0 case and for the Q 6= 0 case

∗ The sl2 algebra operators
∗ The complex rotations

• Combinatorial identities used

References: H. Au-Yang and J.H.H. Perk, J. Phys. A 41, 275201 (2008),
42, 375208 (2009), 43, 025203 (2009), and arXiv:0907.0362.



In our first lecture we introduced the L(sl2) loop algebra

hm = [x+
m−`,x

−
` ], x±m+` = ∓1

2 [hm,x±` ], `,m ∈ Z ,

to describe the Q = 0 ground state sector of the superintegrable chiral Potts
model. We also defined

(x±m)(n) ≡ (x±m)n

n!
, for n ≥ 0,

(x±m)(n) ≡ 0, for n < 0.
These were given in terms of the following operators on horizontal bond states:

Z |ni = ωn |ni, X |ni = |n + 1i, |Ni ≡ |0i,

f |ni = [n + 1] |n + 1i, e |ni = [n] |n− 1i,

[n] ≡ 1− ωn

1− ω
, f |N − 1i = e |0i = 0,

where n = 0, . . . , N − 1. More precisely, we have L copies of these, Zm, fm, em,
(m = 1, . . . , L).



In terms of these we gave the very explicit fundamental formulae:

(x−0 )(n) =
X

{0≤νm≤N−1}
ν1+···+νL=nN

LY

m=1

fνm
j

[νm]!
Z

P
`>m

ν`

m ,

(x+
0 )(n) =

X

{0≤νm≤N−1}
ν1+···+νL=nN

LY

m=1

Z
P

`>m
ν`

m
ωmνm eνm

j

[νm]!
,

(x−1 )(n) =
X

{0≤νm≤N−1}
ν1+···+νL=nN

LY

m=1

ω−mνm fνm
j

[νm]!
Z

P
`<m

ν`

m ,

(x+
−1)

(n) =
X

{0≤νm≤N−1}
ν1+···+νL=nN

LY

m=1

Z
P

`<m
ν`

m
eνm

j

[νm]!
,

where the summations are over the L variables νm, for m = 1, · · · , L.



Finally we introduced the Drinfeld polynomial. For Q = 0 we found

P (tN ) =
1
N

N−1X

n=0

(1− tN )L

(1− ωnt)L
=

rY

j=1

(z − zj),

for the ground state sector and r = (N − 1)L/N if L a multiple of N . Using the
zeroes, we also formed the polynomials

fj(z) =
Y

6̀=j

z − z`

zj − z`
=

r−1X

n=0

βj,nzn, fj(zk) = δj,k .

This gave the following decomposition à la Onsager and Davies

x∓n = ±
rX

m=1

z−n
m E±m, hn =

rX

m=1

z−n
m Hm,

with the inverse relations

E±m = ±
r−1X

n=0

βm∗,nz `
m x∓n+`, Hm =

r−1X

n=0

βm∗,nz `
m hn+`, m = 1, . . . , r ,



where m∗ is the index for which zm∗ = 1/zm. It is easy to show

[E+
m,E−

n ] = δm,nHm, [Hm,E±n ] = ±2δm,nE±m,

and all other commutators zero: We have r independent sl(2)’s.

We introduce the “ferromagnetic state” |Ωi ≡ |{nj =0}i with all spins equal
and the “antiferromagnetic state” |Ω̄i ≡ |{nj =N−1}i. We can show

Hm|Ωi = −|Ωi, (E+
m)2|Ωi = 0, for all m = 1, . . . , r.

Following Onsager we can then define the 2r states

Ψ(ξ1, ξ2, · · · , ξr) =
Y

m∈Jn

E+
m|Ωi, ξj = ±1,

where Jn is any subset of {1, 2, · · · , r}, |Jn| = n, and
Ω

ξj = 1, for j ∈ Jn,
ξj = −1, for j /∈ Jn,

and see tht they form a basis for the ground state sector of the superintegrable
τ2 matrix and the superintegrable chiral Potts model.



From the commutation relations,

[E+
m,E−

n ] = δm,nHm, [Hm,E±n ] = ±2δm,nE±m, [E+
m,E+

n ] = [E−
m,E−

n ] = 0,

we find
HmE+

n |Ωi = −(−1)δm,nE+
n |Ωi.

The ground state sector is then given by the basis

Ψ(ξ1, ξ2, · · · , ξr) =
Y

m∈Jn

E+
m|Ωi, ξj = ±1,

where Jn = (j1, · · · , jn) is any subset of (1, 2, · · · , r) for n = 0, · · · , r, with ξj = 1
for j ∈ Jn, and ξj = −1 for j /∈ Jn. Equivalently,

HjΨ(ξ1, ξ2, · · · , ξr) = ξjΨ(ξ1, ξ2, · · · , ξr).

Particularly, for n = 0 and n = r, we have

|Ωi = Ψ(−1,−1, · · · ,−1), |Ω̄i = Ψ(1, 1, · · · , 1).



Because ξj = ±1, it is easy to see that H2
j = 1 in this restricted eigenspace.

Since E−
j |Ωi = 0, and Hj |Ωi = −|Ωi, we find

E−
j Ψ(ξ1, ξ2, · · · , ξr) = E−

j

Y

m∈Jn

E+
m|Ωi

=
Ω

Ψ(ξ1, · · · , ξj−1,−ξj , ξj+1, · · · , ξr) if j ∈ Jn,
0 if j /∈ Jn.

Likewise, using (E+
j )2|Ωi = 0 we obtain

E+
j Ψ(ξ1, ξ2, · · · , ξr) = E+

j

Y

m∈Jn

E+
m|Ωi

=
Ω

0 if j ∈ Jn,
Ψ(ξ1, · · · , ξj−1,−ξj , ξj+1, · · · , ξr) if j /∈ Jn.

We thus get the usual spin-1
2 relations.



Eigenvectors of the superintegrable chiral Potts transfer matrix

pp

q

q

pppp p

Tq

Tq̂

Following Baxter, we write

Tq = N
1
2 L (xq − yp)L

(xN
q − yN

p )L
T (xq, yq), T̂q = N

1
2 L (xq − xp)L

(xN
q − xN

p )L
T̂ (xq, yq).

taking out “trivial factors.”



We need to solve the eigenvalue problem

T0(xq, yq) |xi = G(λq) |yi, T̂0(xq, yq) |yi = G(λq) |xi.
From Baxter’s work (or the spin-1

2 structure) we know that for the sector studied

G(λq) =
rY

j=1

°
Aj ±Bj

¢
,

where
Aj = ρ cosh θj(1− λ−1

q ), Bj = ρ sinh θj(1 + λ−1
q ),

2 cosh 2θj = k0 + k0−1 − k2tNp zj/k0, ρr = N
1
2 (k0/k2)

1
2 r.

Thus we need rotations R and S, such that |xi = R|Ωi, |yi = S |Ωi, and

T0(xq, yq) = S
rY

j=1

°
Aj −HjBj

¢
R−1, T̂0(xq, yq) = R

rY

j=1

°
Aj −HjBj

¢
S−1

,

or, before the rotations,



T0(xq, yq) =
rY

j=1

h
Xj −HjYj + (E+

j + E−
j )Zj

i
,

T̂0(xq, yq) =
rY

j=1

h
X 0

j −HjY
0
j + (E+

j + E−
j )Z0

j

i
.

After some tedious calculations we found
hΩ| T0(xq, yq) |Ωi

hΩ|E−
mT0(xq, yq) |Ωi

=
Xm + Ym

Zm
=

xN
q − yN

p zm

xN
q − yN

p

,

hΩ̄| T0(xq, yq) |Ω̄i
hΩ̄|E+

mT0(xq, yq) |Ω̄i
=

Xm − Ym

Zm
=

xN
p − yN

q z−1
m

xN
p − yN

q

,

and similarly for T̂0(xq, yq). We find a solution of the form

R =
rY

j=1

Rj , S =
rY

j=1

Sj , Rj = (S−1
j )t,

with



Sj = 1
2 (s11 + s22)1 + 1

2 (s11 − s22)Hj + s12E+
j + s21E−

j ,

with

s22 =

s
m22eθj + n22e−θj

2 sinh 2θj
, s12 =

m12eθj + n12e−θj

m22eθj + n22e−θj
s22,

s21 =
e−2θj − k0

2s12 sinh 2θj
, s11 =

e2θj − k0

2s22 sinh 2θj
,

and

m11 = −≤̄jk
0λp/zj , m12 = m21 = −≤̄jk

0λp, m22 = ≤̄j(zj − 1− k0zjλp),

n11 = ≤̄j(z
−1
j λp − λp + k0), n12 = n21 = n22 = ≤̄jk

0,

≤̄ 2
j ≡

1
k0(z−1

j − 1)λp
.



To give some details: We rewrite the transfer matrices in terms of the edge
variables {ni} and {n0i} with ni = σi − σi+1 as

h{n0i}|TQ(xq, yq)|{ni}i = N− 1
2 L

N−1X

a=0

ω−Qa
LY

j=1

h
(yN

p − xN
q )(yp − xq)

−1

×Wpq(a−Nj + N 0
j)W p0q(a−Nj+1 + N 0

j)
i
, Nj =

X

`<j

n` = σ1 − σj ,

where a = σ1 − σ01, and

Wpq(n) =
≥µp

µq

¥n nY

j=1

yq − xpωj

yp − xqωj
, W p0q(n) =

≥µq

µp

¥n nY

j=1

ωyp − xqωj

yq − xpωj
.

Cancelling out the common factors in the weights,



h{n0i}|TQ(xq, yq)|{ni}i = N− 1
2 L

N−1X

a=0

ω−Qa

×
LY

j=1

"
(yN

p − xN
q )ωa−Nj+1+N 0

j

yp − xqω
a−Nj+1+N 0

j

≥µp

µq

¥nj
njY

`=1

yq − xpω
`+a−Nj+1+N 0

j

yp − xqω
`+a−Nj+1+N 0

j

#

.

It is easy to see that for the two ground states,
|Ωi ↔ ni ≡ Ni ≡ 0 or |Ω̄i ↔ ni ≡ N − 1, Ni ≡ (i− 1)(N − 1),

the above expression simplifies to

h{ni}|TQ(xq, yq)|Ωi = N− 1
2 L

N−1X

a=0

ω−Qa
LY

j=1

ωa+Nj (yN
p − xN

q )
yp − xqωa+Nj

,

and

h{ni}|TQ(xq, yq)|Ω̄i = N− 1
2 L

N−1X

a=0

ω−Qa
LY

j=1

≥µp

µq

¥N−1 ωa+j+Nj (yN
q − xN

p )
yq − xpωa+j+Nj

,

where also n1 + · · · + nL ≡ 0 (modN), as is required by the periodic boundary
conditions.



We have used
QN

`=1(y − xω`) = yN − xN . Particularly, when nj ≡ 0, we find
Nj = 0 and

hΩ|TQ(xq, yq)|Ωi = N1− 1
2 LyrN

p (xq/yp)QPQ(xq/yp),
while for nj ≡ N − 1, we substitute Nj = (j − 1)(N − 1) to obtain

hΩ̄|TQ(xq, yq)|Ωi = N1− 1
2 LδQ,0ω

−L(L+1)/2(yN
p − xN

q )r.

Similarly we find
hΩ̄|TQ(xq, yq)|Ω̄i = N1− 1

2 LωQ(µpyq/µq)rN (xp/yq)QPQ(xp/yq)
and

hΩ|TQ(xq, yq)|Ω̄i = N1− 1
2 LδQ,0ω

L(L+1)/2(yN
p − xN

q )r.

Since L is a multiple of N , the right-hand-sides of the 2nd and 4th equations
are equal, meaning

T0(xq, yq) =
rY

j=1

[Xj −HjYj + (E+
j + E−

j )Zj ],

with equality of the coefficients of E+
j and E−

j .



Using methods described by Deguchi, we can derive by induction

(x+
0 )(n−1)(x−1 )(n)|Ωi =

nX

j=1

Λn−j x−j |Ωi,

(x−1 )(n−1)(x+
0 )(n)|Ω̄i =

nX

j=1

Λn−j x+
j−1|Ω̄i,

hΩ|(x+
0 )(n)(x−1 )(n−1) =

nX

j=1

Λn−jhΩ|x+
j−1,

hΩ̄|(x−1 )(n)(x+
0 )(n−1) =

nX

j=1

Λn−jhΩ̄|x−j ,

which we can invert using
mX

n=0

Λm−nSn = δm,0, with S0 = 1, Λ0 = 1, Sn =
rX

i=1

z−n
i βi,0,

for 1−r < n < r−1, giving



x−j |Ωi =
jX

n=1

Sj−n(x+
0 )(n−1)(x−1 )(n)|Ωi,

x+
j−1|Ω̄i =

jX

n=1

Sj−n(x−1 )(n−1)(x+
0 )(n)|Ω̄i,

hΩ|x+
j−1 =

jX

n=1

Sj−nhΩ|(x+
0 )(n)(x−1 )(n−1),

hΩ̄|x−j =
jX

n=1

Sj−nhΩ̄|(x−1 )(n)(x+
0 )(n−1),

where the more complicated looking right-hand sides are in fact more easy to
handle.

Next, after obvious substitutions we arrive at



hΩ|E−
m = −βm,0

rX

`=1

z`−1
m hΩ|(x+

0 )(`)(x−1 )(`−1),

E−
m|Ω̄i = −βm,0

rX

`=1

z`−1
m (x−1 )(`−1)(x+

0 )(`)|Ω̄i,

E+
m|Ωi = βm,0

rX

`=1

z`
m(x+

0 )(`−1)(x−1 )(`)|Ωi,

hΩ̄|E+
m = βm,0

rX

`=1

z`
mhΩ̄|(x−1 )(`)(x+

0 )(`−1).

Using
en

[n]!
|n0i =

"
n0

n

#

|n0 − ni, fn

[n]!
|n0i =

"
n0 + n

n

#

|n0 + ni,

hn0| e
n

[n]!
=

"
n0 + n

n

#

hn0 + n|, hn0| f
n

[n]!
=

"
n0

n

#

hn0 − n|.



we obtain

(x−1 )(`)|Ωi =
X

{0≤nj≤N−1}
n1+···+nL=`N

ω
−

P
j

jnj |{nj}i,

(x+
0 )(`)|Ω̄i = (−1)`

X

{0≤nj≤N−1}
n1+···+nL=`N

|{N − 1− nj}i,

hΩ|(x+
0 )(`) =

X

{0≤nj≤N−1}
n1+···+nL=`N

ω
P

j
jnj h{nj}|,

hΩ̄|(x−1 )(`) = (−1)`
X

{0≤nj≤N−1}
n1+···+nL=`N

h{N − 1− nj}|,

and



(x+
0 )(`)(x−1 )(`+1)|Ωi =

X

{0≤nj≤N−1}
n1+···+nL=N

ω
−

P
j

jnj K`N ({nj})|{nj}i,

hΩ|(x+
0 )(`+1)(x−1 )(`) =

X

{0≤nj≤N−1}
n1+···+nL=N

h{nj}|ω
P

j
jnj K̄`N ({nj}),

(x−1 )(`)(x+
0 )(`+1)|Ω̄i = −

X

{0≤nj≤N−1}
n1+···+nL=N

K`N ({nj})|{N − 1− nj}i,

hΩ̄|(x−1 )(`+1)(x+
0 )(`) = −

X

{0≤nj≤N−1}
n1+···+nL=N

h{N − 1− nj}|K̄`N ({nj}),

where



Km({nj}) ≡
X

{0≤n0
j
≤N−1}

n01+···+n0
L

=m

LY

j=1

"
nj + n0j

n0j

#

ωn0jNj , Nj ≡
j−1X

`=1

n` ,

K̄m({nj}) ≡
X

{0≤n0
j
≤N−1}

n01+···+n0
L

=m

LY

j=1

"
nj + n0j

n0j

#

ωn0jN̄j , N̄j ≡
LX

`=j+1

n` ,

for integers m ≤ (N−1)L. The generating function of Km({nj}) for
P

nj = kN
is

g({nj}, t) ≡
(N−1)L−kNX

m=0

Km({nj})tm =
1

(1− tN )k

LY

j=1

1− tN

1− tωNj
.



We define the following polynomials for n1 + · · ·+ nL = N ,

GQ({nj}, z) ≡
mQ−1X

`=0

KQ+`N ({ni})z` =
t−Q

N(1− tN )

N−1X

a=0

ω−Qa
LY

j=1

1− tN

1− tωa+Nj
,

and

ḠQ({nj}, z) ≡
mQ−1X

`=0

K̄Q+`N ({nj})z` =
t−Q

N(1− tN )

N−1X

a=0

ω−Qa
LY

j=1

1− tN

1− tωa+N̄j
,

where z = tN . Here the right-hand equalities are proved using the generating
functions g (and ḡ which is similarly defined).

We then have



hΩ|E−
m = −βm,0

X

{0≤nj≤N−1}
n1+···+nL=N

h{nj}|ω
P

j
jnj Ḡ({nj}, zm),

hΩ̄|E+
m = −βm,0zm

X

{0≤nj≤N−1}
n1+···+nL=N

h{N − 1− nj}| Ḡ({nj}, zm),

E+
k |Ωi = βk,0zk

X

{0≤nj≤N−1}
n1+···+nL=N

ω
−

P
j

jnj G({nj}, zk)|{nj}i,

E−
k |Ω̄i = βk,0

X

{0≤nj≤N−1}
n1+···+nL=N

G({nj}, zk)|{N − 1− nj}i.

With these results we have enough machinery to determine the coefficients Xj ,
Yj , and Zj in the transfer matrices

T0(xq, yq) =
rY

j=1

[Xj −HjYj + (E+
j + E−

j )Zj ].



Since
hΩ|E−

mE+
k |Ωi = δm,k,

we conclude that
βm,0βk,0zk

X

{0≤nj≤N−1}
n1+···+nL=N

Ḡ({nj}, zm)G({nj}, zk) = −δmk .

Next, we introduce the polynomials

hk(z) ≡
X

{0≤nj≤N−1}
n1+···+nL=N

Ḡ({nj}, zk)G({nj}, z),

h̄k(z) ≡
X

{0≤nj≤N−1}
n1+···+nL=N

Ḡ({nj}, z)G({nj}, zk).

With the degree of polynomial G({nj}, z), the degree of hk(z) is also r − 1.
From the above orthogonality we know its r − 1 roots. Hence,

hk(z) = −fk(z)/zkβ2
k,0 = β−1

k,0

Y

6̀=k

(z − z`) = h̄k(z).



Using what we have so far:

hΩ|E−
mT0(xq, yq)|Ωi = −yrN

p (1− xN
q /yN

p )N1− 1
2 L

Y

6̀=m

(xN
q /yN

p − z`).

hΩ̄|E+
mT0(xq, yq)|Ω̄i = −zm(µpxp/µq)rN (1− yN

q /xN
p )N1− 1

2 L
Y

6̀=m

(yN
q /xN

p − z`),

hΩ̄|TQ(xq, yq)|Ωi = N1− 1
2 LδQ,0ω

−L(L+1)/2(yN
p − xN

q )r,

hΩ|TQ(xq, yq)|Ω̄i = N1− 1
2 LδQ,0ω

L(L+1)/2(yN
p − xN

q )r,

and similar relations for T̂0(xq, yq).

These give enough equation to determine the “Onsager rotations” leading
to what we gave before, solving the Q = 0 ground state sector.

The identities for polynomials and generating functions based on roots of
Drinfeld polynomials can be generalized to Q 6= 0 cases, to twisted boundary
conditions, and to N not a multiple of L. Part of that is done in our third paper.



Quantum loop subalgebra for Q/=0

We must recall the τ2 transfer matrix for spin shift parameter Q:

τ2(tq)|Q = A(tq) + ω−QD(tq),

the monodromy operator

U(tq) =
LX

j=0

(−ωtq/tp)j

µ
Aj Bj

Cj Dj

∂
.

and the definitions

B(n)
1 =

(B1)n

[n]!
, B(n)

L =
(BL)n

[n]!
,

C(n)
0 =

(C0)n

[n]!
, C(n)

L−1 =
(CL−1)n

[n]!
,

(with a limiting process q = rω, r ↑ 1 assumed if n ≥ N).



For Q 6= 0 the special states |Ωi and |Ω̄i have different eigenvalues:

τ2(tq)|Q |Ωi =
£
(1− ωt)L+ ω−Q(1− t)L

§
|Ωi,

τ2(tq)|Q |Ω̄i =
£
ω−Q(1− ωt)L+ (1− t)L

§
|Ω̄i.

We find that
JY

j=1

C(mjN+Q)
0 B(njN+Q)

1 |Ωi,
JY

j=1

C(mjN+N−Q)
L−1 B(njN+N−Q)

L |Ωi

are eigenvectors in the same degenerate eigenspace as |Ωi, while

JY

j=1

B(mjN+N−Q)
1 C(njN+N−Q)

0 |Ω̄i,
JY

j=1

B(mjN+Q)
L C(njN+Q)

L−1 |Ω̄i

are eigenvectors in the same degenerate eigenspace as |Ω̄i.
For Q 6= 0, these two eigenspaces both have dimension 2r−1. However,
for Q = 0 they merge to one eigenspace of dimension 2r.



Defining

x−1,Q =
ωQ

ΛQ
0 (1− ω)N+2Q

C(Q)
0 B(N+Q)

1 ,

x+
0,Q =

ωQ

ΛQ
0 (1− ω)N+2Q

C(N+Q)
0 B(Q)

1 ,

we can construct the loop subalgebra generated by

h1,Q = [x+
0,Q,x−1,Q],

x−n+2,Q = 1
2 [h1,Q,x−n+1,Q],

x+
n+1,Q = −1

2 [h1,Q,x+
n,Q],

hn+1,Q = [x+
n,Q,x−1,Q],

for 0 ≤ n ≤ ∞, provided we can prove the Serre relations

[[[x+
0,Q,x−1,Q],x−1,Q],x−1,Q] = 0, [x+

0,Q, [x+
0,Q, [x+

0,Q,x−1,Q]]] = 0.

For now, this is a conjecture backed up by some special cases proved
analytically or checked by Maple 12.



We can then introduce

E+
m,Q =

r−1X

n=0

βQ
m∗,nzm,Qx−n+1,Q, E−

m,Q = −
r−1X

n=0

βQ
m∗,nx+

n,Q,

Hm,Q = [E+
m,Q,E−

m,Q] =
r−1X

n=0

βQ
m∗,nzm,Qhn+1,Q,

for m = 1, . . . , r − 1, and with βQ
m,n and zm,Q derived from the

Drinfeld polynomial for Q 6= 0 given before.

The 2r−1 eigenvectors of the superintegrable chiral Potts transfer matrix
can then all be given, again in terms of rotation matrices R and S.

Similarly, another set of 2r−1 eigenvectors can be constructed starting
with |Ω̄i, instead of |Ωi.



Summary
• The integrable chiral Potts model is a special parafermionic model. To

better understand this we need to evaluate correlation functions. From
Baxter’s Z-invariance, it is enough to do this for the superintegrable
subcase.

• We have constructed 2r eigenvectors of the transfer matrix for Q = 0
starting from the τ2 model and finding the loop group and the rotation
matrices to be used.

• We have also constructed two sets of 2r−1 eigenvectors of the transfer
matrix for all Q 6= 0.

• Having the eigenvectors in the ground state sectors is a major step
towards a better understanding of the order parameters and correlation
functions. Helen Au-Yang will proceed from the results discussed here
and give a derivation of the order parameters that were conjectured in
1988 by Albertini, McCoy, Perk, and Tang, and first proved by Baxter
in 2005 using functional equations.
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