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Abstract:

There are two “integrability” criteria in statistical mechanics.

∗ One is the star-triangle equation, also known as the Yang-Baxter equation;

∗ the other is a generalization of Gaussian integration to fermionic or bosonic
systems.

In this talk I plan to describe both criteria in a historical context and from
different points of view, omitting the more technical details. Then I will discuss
some of our recent results obtained using these techniques, showing some of our
latest results for the pair correlation functions in the (planar) Z-invariant Ising
model and the quantum Ising chain, ending with a few remarks on the chiral
Potts model. This talk will be aimed at a non-specialist audience.
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Star-Triangle Equation in Electric Networks
In 1899 the Brooklyn engineer Kennelly published a short paper, entitled

the equivalence of triangles and three-pointed stars in conducting networks.
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Z1Z2 + Z2Z3 + Z3Z1

Z1Z2Z3/(Z1 + Z2 + Z3)

The star-triangle transformation is also known under other names within the
electric network theory literature as wye-delta (Y−∆), upsilon-delta (Υ−∆),
or tau-pi (T−Π) transformation.



Knot Theory and Braid Group
Reidemeister moves of type I, II, and III to undo a knot (1926):
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Star-Triangle Equation for Spin Models
Onsager—in his 1944 Ising model paper—made a brief remark on an obvious

star-triangle transformation relating the model on the honeycomb lattice with
the one on the triangular lattice.

Generalizing, we introduce a lattice with spins a, b, · · · = 1, · · · , N on the lattice
sites and with interactions between spins a and b given in terms of Boltzmann
weight factors Wab and W ab.

The integrability of the model is
expressed by the existence of spectral
variables (rapidities p, q, r, . . .) that
live on oriented lines, drawn dashed
here. One can distinguish two kinds
of pair interactions depending on the
orientations of the spins w.r.t. the
rapidity lines. Integrability requires
that the weights satisfy:
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W cd(p, q)W db(q, r)W da(p, r)

= R(p, q, r)W ba(p, q)W ca(q, r)W cb(p, r)

R(p, q, r)W ab(p, q)W ac(q, r)W bc(p, r)

=
X

d

W dc(p, q)W bd(q, r)W ad(p, r)
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The two equations differ by the transposition of both spin variables in all six
weight factors. In general there are scalar factors R(p, q, r) and R(p, q, r), which
can often be eliminated by a suitable renormalization of the weights.
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Generalizations:

The most general Yang–Baxter
Equation has spin variables on
the line segments of the rapidity
lines and on the faces cut out by
them, with faces alternatingly
colored black and white.

If the spin variables only on all
faces, one has an IRF model.

If the spin variables only live on
rapidity lines, one has a vertex
model.

JHHP & HAY, Yang–Baxter Equation, in Encyclopedia of Mathematical Physics,
eds. J.-P. Françoise, G.L. Naber and Tsou S.T., Oxford: Elsevier, 2006, Vol. 5,
pp. 465–473. See also arXiv:math-ph/0606053.



Partition Function, Free Energy and Correlation Function

The partition function is the sum of the Boltzmann weight over all state
variables (spins) σ; the Boltzmann weight is here a product of the weight factors
for each vertex ` (intersection of a pair of rapidity lines) depending on the spin
values {σ}` around that vertex:

Z =
X

spins {σ}

Y

vertices `

W`({σ}`) .

This provides the normalisation for the probability distribution.

The free energy is defined by F = −kBT lnZ.

The correlation function of n spins σ1,σ2, . . . ,σn at positions x1, x2, . . . , xn is

hσ1σ2 · · ·σni =
1
Z

X

spins {σ}

Y

vertices `

W`({σ}`) σ1σ2 · · ·σn .



Implications of Star-Triangle/Yang–Baxter Equation

• The partition function Z and the free energy are invariant under moving of
rapidity lines. Baxter calls this Z-invariance.

• The order parameters (one-point correlation functions) cannot depend on
the rapidity variables, as one can move all rapidity lines “to infinity” and
move other ones with different values of the rapidity variables in. They can
only depend on “moduli”—variables that are common to all rapidity lines.

• Pair correlation functions can only depend on rapidity variables of rapidity
lines crossing between the two spins under consideration and the moduli.

• Integrable quantum chain hamiltonians can be found to be logarithmic
derivatives of commuting transfer matrices of two-dimensional classical spin
models.



Quadratic Difference/Differential Equations
The second integrability principle is a generalization of Gaussian integration.
One can double the space and then employ rotational symmetry as in:

I ≡
Z ∞

−∞
e−x2

dx, I2n ≡
Z ∞

−∞
x2ne−x2

dx =⇒

I2 =
Z ∞

−∞

Z ∞

−∞
e−(x2+y2)dxdy =

Z 2π

0

Z ∞

0
e−r2

rdr dθ = π ,

I I2n =
Z ∞

−∞

Z ∞

−∞
x2ne−(x2+y2)dxdy

=
Z ∞

−∞

Z ∞

−∞
(x cos θ + y sin θ)2ne−(x2+y2)dxdy .

Maclaurin at order θ2 then gives

0 = −1
2

2n I I2n +
2n(2n− 1)

2
I2 I2n−2 =⇒ I I2n = (2n− 1) I2 I2n−2 .



Generalizations of the Wick Theorem
Applying this idea to bosonic or fermionic quantum systems, one can derive
generalizations of the Wick theorem as Ward identities under rotations in the
doubled space, e.g.

Tr(O1O2O3O4) Tr(Γ1O1Γ2O2Γ3O3Γ4O4)
= Tr(Γ1O1Γ2O2O3O4) Tr(O1O2Γ3O3Γ4O4)
± Tr(Γ1O1O2Γ3O3O4) Tr(O1Γ2O2O3Γ4O4)
+ Tr(Γ1O1O2O3Γ4O4) Tr(O1Γ2O2Γ3O3O4)

with + for bosons and − for fermions. The Γ’s are linear combinations of
creation and annihilation operators. The O’s are products of factors that are
either exponentials of quadratic forms or linear expressions.

More general, using traces with 2n Γ’s, (n = 2, 3, . . .), one gets recurrence
relations determining Hafnians or Pfaffians.

JHHP, Phys. Lett. A 79 (1980) 1–5, JHHP et al., Physica A 123 (1984) 1–49.



Ferromagnetic Symmetric Square-Lattice Ising Model

H = −J
X

m,n

(σm,nσm,n+1 + σm,nσm+1,n), J > 0

[State {σ} is map assigning to each site (m,n) spin σm,n = ±1.]

Elliptic modulus: k = sinh2(2J/kBT ) ≡ k> ≡ 1/k<

k < 1 for T > Tc and k > 1 for T < Tc

Kramers-Wannier duality: k ↔ 1/k

Spontaneous magnetization (Onsager & Yang)

hσi =
Ω

(1− k−2)1/8, T < Tc,
0, T ≥ Tc.

Usual and connected pair correlation functions

C(m,n) = hσ0,0σm,ni, C(c)(m,n) = hσ0,0σm,ni − hσi2



Difference Equations for Pair Correlation Functions

£
C(m,n + 1)C(m,n− 1)− C(m,n)2

§

+ k
£
C∗(m + 1, n)C∗(m− 1, n)− C∗(m,n)2

§
= 0,

£
C(m + 1, n)C(m− 1, n)− C(m,n)2

§

+ k
£
C∗(m,n + 1)C∗(m,n− 1)− C∗(m,n)2

§
= 0,

£
C(m,n)C(m + 1, n + 1)− C(m + 1, n)C(m,n + 1)

§
=

k
£
C∗(m,n)C∗(m + 1, n + 1)− C∗(m + 1, n)C(m,n + 1)

§
,

√
k

£
C(m + 1, n)C∗(m− 1, n) + C(m− 1, n)C∗(m + 1, n)

+ C(m,n + 1)C∗(m,n− 1) + C(m,n− 1)C∗(m,n + 1)
§

= (k + 1)C(m,n)C∗(m,n),



Susceptibility Series

χ̄ ≡ kBTχ =
∞X

m,n=−∞

°
hσ0,0σm,ni − hσ0,0i2

¢
.

High-temperature series, s ≡ sinh(2K)/2 =
√

k/2 , (K = J/kBT ):

χ̄ =1 + 4s + 12s2 + 32s3 + 76s4 + 176s5 + 400s6 + · · ·
+ 200733025882917299143116657228410703566232325184536\

7545550226445723763406738301159160108585998318576s323 · · ·

Low-temperature series, s ≡ 1/(2 sinh(2K)) = 1/(2
√

k) :

χ̄ =4s4 + 16s6 + 104s8 + 416s10 + 2224s12 + · · ·
+ 3051547724509044350855662072500389468463893273907\

5732810211229434299420849612234517174982030845245\
5331887458424846630637797467206682914215700492366\
9271259707379855275224873707435550114462001144064s646 · · ·



Spin 1
2

Operator basis for Quantum Chain

σx
j := · · ·

µ
1 0
0 1

∂
⊗

µ
1 0
0 1

∂
⊗

j-th
z }| {µ

0 1
1 0

∂
⊗

µ
1 0
0 1

∂
⊗

µ
1 0
0 1

∂
⊗ · · ·

σy
j := · · ·

µ
1 0
0 1

∂
⊗

µ
1 0
0 1

∂
⊗

µ
0 −i
i 0

∂
⊗

µ
1 0
0 1

∂
⊗

µ
1 0
0 1

∂
⊗ · · ·

σz
j := · · ·

µ
1 0
0 1

∂
⊗

µ
1 0
0 1

∂
⊗

µ
1 0
0 −1

∂
⊗

µ
1 0
0 1

∂
⊗

µ
1 0
0 1

∂
⊗ · · ·

Schrödinger time dependence in Heisenberg picture with Hamiltonian H:

σα
j (t) := eiHtσα

j e−iHt, in units for which h̄ ≡ 1, (α = x, y, z).



Quantum Ising Chain

H = −1
2

∞X

j=−∞
(Jσx

j σx
j+1 + Bσz

j ), H∗ = −1
2

∞X

j=−∞
(Bσx

j σx
j+1 + Jσz

j )

The dual chain corresponds to the interchange of J and B. The pair correlation
function

Xn(t) ≡ hσx
j (t)σx

j+ni ≡
Tr (eitHσx

j e−itHσx
j+n e−βH)

Tr (e−βH)
satisfies 





Xn(t)Ẍn(t)− Ẋn(t)2 = B2
°
X∗

n−1(t)X∗
n+1(t)−X∗

n(t)2
¢

X∗
n(t)Ẍ∗

n(t)− Ẋ∗
n(t)2 = J2

°
Xn−1(t)Xn+1(t)−Xn(t)2

¢

At the critical field B = J this reduces to

Xn(t)Ẍn(t)− Ẋn(t)2 = J2
°
Xn−1(t)Xn+1(t)−Xn(t)2

¢

JHHP, Phys. Lett. A 79 (1980) 1–2.



These equations can be shown to satisfy a discrete generalization of a hyperbolic
partial differential equation. Therefore, we expect the initial-value problem to be
stable. At zero temperature, the initial values relate to the diagonal correlation
in the 2d Ising model with k = B/J or J/B:

Xn(0) = hσ00σnni, Ẋn(0) = Ẋ0(0) δn0.

For J = B, we have the simple result

Xn(0) =
≥ 2

π

¥n n−1Y

`=1

≥
1− 1

4`2
¥l−n

, Ẋn(0) =
2
π

δn0.

Also for B 6= J these are known to high precision from our earlier work and
a newly derived asymptotic expansion for large n. Next we can find as many
time-derivatives at t = 0 as we want from the differential equations. We can
then calculate Xn(δt) and Ẋn(δt) to high precision using Taylor expansion to,
say, five orders for sufficiently small δt.

Repeating this process N times we can calculate Xn(Nδt) and Ẋn(Nδt)
using initial conditions in the “past light-cone.” This is a discrete version of the
method of characteristics.



X0(t) for B = J = 1
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X0(t) for B/J = 0.7
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X0(t) for J/B = 0.7

7

1.0

0.8

0.6

6 1054321

0.9

0 9

0.7

8
0.5

12
t

11

875

0.05

−0.05

3

−0.15

9
t
6 10

0.1

0.0
4

−0.1

−0.2

10 112 12

<X0(t) =X0(t)



X0(t) for B/J = 0.7
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X0(t) for J/B = 0.7
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Baxter’s Z-invariant inhomogeneous Ising model

ui

u1

vjv1 v2

u2

u3 u4

u0

v3u5 • • • •

•

vl

vl+1

vl–1

u–1

• •
•
•



Parameterization in terms of elliptic functions of modulus k:

ui vj ui vj

Ki j
–

Ki j

(a) (b)

sinh
°
2K(u1, u2)

¢
= k sc(u1 − u2, k

0) = cs
°
K(k0) + u2 − u1, k

0¢,
sinh

°
2K̄(u1, u2)

¢
= cs(u1 − u2, k

0) = k sc
°
K(k0) + u2 − u1, k

0¢,

k0 =
p

1− k2, sc(v, k) = sn(v, k)/cn(v, k) = 1/cs(v, k)



K and K̄ are interchanged if we replace u1 by u2 ±K(k0) and u2 by u1: flipping
the orientation of a rapidity line j is equivalent to changing its rapidity variable
uj to uj ±K(k0).

Two-Point Correlation Functions
Pair correlations only depend on elliptic modulus k and the values of the 2m
rapidity variables u1, . . . , u2m that pass between the two spins, implying the
existence of an infinite set of universal functions g2, g4, . . . , g2m, . . . such that for
any permutation P and rapidity shift v

hσσ0i = g2m(k; ū1, . . . , ū2m) = g2m(k; ūP(1) + v, . . . , ūP(2m) + v).
ūj = uj if the jth rapidity line passes between the two spins σ and σ0 in a given
direction and ūj = uj + K(k0) if it passes in the opposite direction.

If two of the rapidity variables passing between the two spins differ by K(k0),
they can be viewed as belonging to a single rapidity line moving back and forth
between these two spins:

g2m+2

°
k; ū1, . . . , ū2m, ū2m+1, ū2m+1 + K(k0)

¢
= g2m(k; ū1, . . . , ū2m).

[See also: R.J. Baxter, Phil. Trans. Roy. Soc. A 289 (1978) 315.]



Jin’s Conjecture of Scaling Limit of Two-Point Function
In critical region, k → 1, K(k0) → K(0) = 1

2π, we have

sinh
°
2K(u1, u2)

¢
= tan(u1 − u2) = cot(±1

2π + u2 − u1),
sinh

°
2K̄(u1, u2)

¢
= cot(u1 − u2) = tan(±1

2π + u2 − u1),

In terms of scaled distance r = R/ξd, with ξ−1
d = | log k| and

R =
1
2

∑Ω 2mX

j=1

cos(2uj)
æ2

+
Ω 2mX

j=1

sin(2uj)
æ2∏1/2

with all uj passing between the two spins. Then

hσσ0i ≈ |1− k−2|1/4F (r), hσσ0i∗ ≈ |1− k−2|1/4G(r),

FF 00 − F 02 = −r−1GG0, GG00 −G02 = −r−1FF 0.



Wavevector-Dependent Susceptibility

χ̄(qx, qy) ≡ kBT χ(qx, qy)

= lim
N→∞

1
N

X

m1,n1

X

m2,n2

≥
hσm1,n1σm2,n2i − hσ0,0i2

¥
ei(qxx+qyy),

where (x, y) is the physical distance vector between positions (m1, n1) and
(m2, n2), and N is number of sites. Note, χ(0, 0) is the usual susceptibility.

In the scaling limit, we can write

hσm1,n1σm2,n2i − hσ0,0i2 = |1− k−2|1/4 F±(κR)

where Ω
F+(κR) = F (R/ξd), T > Tc,
F−(κR) = G(R/ξd)− 1, T < Tc,

and κ = 1/ξd = | log k|. F (r) and G(r) satisfy a Painlevé V differential equation.



Fibonacci Ising lattices
We can make the couplings J and/or the lattice aperiodic. Findings:

• Periodic lattice ferromagnetic couplings: Periodic χ(q), with peaks at
reciprocal lattice sites, sharper and sharper as T → Tc

• Periodic lattice mixed couplings: Periodic χ(q), with more and more
incommensurate peaks as T → Tc

• Aperiodic lattice: Quasiperiodic χ(q), more and more peaks visible
closer to Tc

For Z-invariant lattices, we can evaluate χ(q) numerically to high accuracy.
However, the structure is clearer in density plots. For the mixed ferro/antiferro
case, the simplest examples follow adding signs to the couplings of the square
lattice by gauge transform. Next, we show four examples based on de Bruijn’s
generalized Fibonacci sequences, with j = 0 based on the golden ratio and j = 1
on the silver mean, flipping signs depending the sequence of zeros and ones
pj(n) ≡ bγ + (n + 1)/αjc − bγ + n/αjc, with αj ≡ 1

2

£
(j + 1) +

p
(j + 1)2 + 4

§
.



Generalized Fibonacci Ising lattices

j = 0 j = 1

j = 2 j = 3

k> = 0.915 · · ·, −π ≤ qx, qy ≤ π



Pentagrid Ising lattice



Far from Criticality

−4π ≤ qx, qy ≤ 4π

k< = 0.048 · · · k< = 0.236 · · ·



Close to Criticality

−4π ≤ qx, qy ≤ 4π

k< = 0.701 · · · k> = 0.701 · · ·



Close to Criticality

−16π ≤ qx, qy ≤ 16π

k< = 0.701 · · · k> = 0.701 · · ·



Some Remarks about the Integrable Chiral Potts Model
• The Boltzmann weights W and W break parity invariance in general, as

Wpq(a − b) 6= Wpq(b − a) for nearest-neighbour spins a and b. They solve
the Yang–Baxter equations, but are parametrized by higher-genus functions.

• Due to the parity breaking, the classical 2d model and the related quantum
chain model behave differently in their respective physical domains.

• There is a deep relationship with cyclic (basic) hypergeometric fuctions
(qN = 1), with N the number of states per spin. For N →∞ these relations
become known and new identities for ordinary hypergeometric functions.

• Detailed results for free energies, interfacial tensions and critical exponents
are known, giving information on the multicritical point in the more general
non-integrable model.

• The 1988 conjecture on order parameters was finally proved by Baxter.

• For pair correlation functions one needs eigenvectors of the transfer matrix.
This is where we plan to spend much effort during our stay.
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