Spontaneous Magnetization in the Integrable Chiral Potts Model Cracking the Determinant

Rodney Baxter (Presented by Helen Au-Yang)

Oklahoma State University

January 21, 2010

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

It has been now proven that the order parameter can be written as a sum D_{PQ}. Baxter further conjectured in early 2009 that D_{PQ} is a determinant. In the most recent paper he proved it. I shall go through his proof here. In this talk, I will include the verbatim version of his paper or the notes he sent me. As his English is better than mine, to change the writing would make it less understandable.

Outline

- It has been now proven that the order parameter can be written as a sum D_{PQ}. Baxter further conjectured in early 2009 that D_{PQ} is a determinant. In the most recent paper he proved it. I shall go through his proof here. In this talk, I will include the verbatim version of his paper or the notes he sent me. As his English is better than mine, to change the writing would make it less understandable.
- I will talk about how he cracked the determinant. During our stay in Canberra, Jacques was able to express it as a Fredholm determinant, but he and Bazhanov have spent some time trying to solve it, but did not suceed. It is worthwhile to understand Baxter's method.

Outline

- It has been now proven that the order parameter can be written as a sum D_{PQ}. Baxter further conjectured in early 2009 that D_{PQ} is a determinant. In the most recent paper he proved it. I shall go through his proof here. In this talk, I will include the verbatim version of his paper or the notes he sent me. As his English is better than mine, to change the writing would make it less understandable.
- I will talk about how he cracked the determinant. During our stay in Canberra, Jacques was able to express it as a Fredholm determinant, but he and Bazhanov have spent some time trying to solve it, but did not suceed. It is worthwhile to understand Baxter's method.
- Finally I will discuss many of the other open problems that remain in the chiral Potts model.

Let $c_1, \ldots, c_m, y_1, \ldots, y_m$ and $c'_1, \ldots, c'_{m'}, y'_1, \ldots, y'_n$ be sets of variables, with both m, n be arbitrary positive integers, and the c_i, y_i, c'_i, y'_i to be arbitrary variables.

Let $c_1, \ldots, c_m, y_1, \ldots, y_m$ and $c'_1, \ldots, c'_{m'}, y'_1, \ldots, y'_n$ be sets of variables, with both m, n be arbitrary positive integers, and the c_i, y_i, c'_i, y'_i to be arbitrary variables. Let $s = \{s_1, \ldots, s_m\}$ be a set of m integers with values $s_i = 0$ or 1 for $1 \le i \le m$. Similarly, let $s' = \{s'_1, \ldots, s'_n\}$, where each $s'_i = 0$ or 1.

$$\kappa_s = s_1 + \cdots + s_m, \quad \kappa_{s'} = s'_1 + \cdots + s'_n$$

Let $c_1, \ldots, c_m, y_1, \ldots, y_m$ and $c'_1, \ldots, c'_{m'}, y'_1, \ldots, y'_n$ be sets of variables, with both m, n be arbitrary positive integers, and the c_i, y_i, c'_i, y'_i to be arbitrary variables. Let $s = \{s_1, \ldots, s_m\}$ be a set of m integers with values $s_i = 0$ or 1 for $1 \le i \le m$. Similarly, let $s' = \{s'_1, \ldots, s'_n\}$, where each $s'_i = 0$ or 1.

$$\kappa_s = s_1 + \cdots + s_m, \ \kappa_{s'} = s'_1 + \cdots + s'_n.$$

For a given set s, let V be the set of integers i such that $s_i = 0$ and W the set such that $s_i = 1$. The set V has $m - \kappa_s$ integers, while W has κ_s . Define V', W' similarly for the set s', so V' has $n - \kappa_{s'}$ elements, while W' has $\kappa_{s'}$.

Let $c_1, \ldots, c_m, y_1, \ldots, y_m$ and $c'_1, \ldots, c'_{m'}, y'_1, \ldots, y'_n$ be sets of variables, with both m, n be arbitrary positive integers, and the c_i, y_i, c'_i, y'_i to be arbitrary variables. Let $s = \{s_1, \ldots, s_m\}$ be a set of m integers with values $s_i = 0$ or 1 for $1 \le i \le m$. Similarly, let $s' = \{s'_1, \ldots, s'_n\}$, where each $s'_i = 0$ or 1.

$$\kappa_s = s_1 + \cdots + s_m, \ \kappa_{s'} = s'_1 + \cdots + s'_n.$$

For a given set s, let V be the set of integers i such that $s_i = 0$ and W the set such that $s_i = 1$. The set V has $m - \kappa_s$ integers, while W has κ_s . Define V', W' similarly for the set s', so V' has $n - \kappa_{s'}$ elements, while W' has $\kappa_{s'}$. Define • Goto pEndr

$$A_{s,s'} = \prod_{i \in W} \prod_{j \in V'} (c_i - c'_j) , \quad B_{s,s'} = \prod_{i \in V} \prod_{j \in W'} (c_i - c'_j) ,$$

$$C_s = \prod_{i \in W} \prod_{j \in V} (c_j - c_i) , \quad D_{s'} = \prod_{i \in V'} \prod_{j \in W'} (c'_j - c'_i) .$$

$$R_{mn} = \sum_{s} \sum_{s'} y_1^{s_1} y_2^{s_2} \cdots y_m^{s_m} \left(\frac{A_{s,s'} B_{s,s'}}{C_s D_{s'}}\right) y_1^{\prime s'_1} y_2^{\prime s'_2} \cdots y_n^{\prime s'_n} , \quad \overline{\kappa_s = \kappa_{s'}}.$$

Definitions(continue)

Now define $a_i, \ldots, a_m, b_1, \ldots b_m$ and $a'_i, \ldots, a'_n, b'_1, \ldots b'_n$ by

$$egin{aligned} &a_i = \prod_{j=1}^n (c_i - c_j')\,, \;\; a_i' = \prod_{j=1}^m (c_i' - c_j)\,, \ &b_i = \prod_{j=1, j
eq i}^n (c_i - c_j)\,, \;\; b_i' = \prod_{j=1, j
eq i}^n (c_i' - c_j')\,, \end{aligned}$$

• Goto pf-dl • Goto pf-ndd • Goto pf-ccd and let \mathcal{B} be an m by n matrix, and \mathcal{B}' an n by m matrix, with elements

$$\mathcal{B}_{ij} = rac{a_i}{b_i(c_i - c'_j)}\,, \ \ \mathcal{B}'_{ij} = rac{a'_i}{b'_i(c'_i - c_j)}\,.$$

Definitions(continue)

Now define $a_i, \ldots, a_m, b_1, \ldots b_m$ and $a'_i, \ldots, a'_n, b'_1, \ldots b'_n$ by

$$egin{aligned} & a_i = \prod_{j=1}^n (c_i - c_j')\,, \;\; a_i' = \prod_{j=1}^m (c_i' - c_j)\,, \ & b_i = \prod_{j=1, j
eq i}^n (c_i - c_j)\,, \;\; b_i' = \prod_{j=1, j
eq i}^n (c_i' - c_j')\,, \end{aligned}$$

• Goto pf-d1 • Goto pf-ndd • Goto pf-ccd and let \mathcal{B} be an m by n matrix, and \mathcal{B}' an n by m matrix, with elements

$${\cal B}_{ij} = rac{a_i}{b_i(c_i-c_j')}\,, \;\; {\cal B}_{ij}' = rac{a_i'}{b_i'(c_i'-c_j)}\,.$$

Also, define an m by m diagonal matrix Y and an n by n diagonal matrix Y' by

$$Y_{i,j} = y_i \delta_{ij}, \quad Y'_{i,j} = y'_i \delta_{ij}.$$

Then the determinant mentioned above is

$$\mathcal{D}_{mn} = D_{PQ} = \det[I_m + Y\mathcal{B}Y'\mathcal{B}'],$$

Proof that $\mathcal{R}_{mn} = \mathcal{D}_{mn}$

Both \mathcal{R}_{mn} and \mathcal{D}_{mn} are rational functions of $c_1, \ldots c_m, c'_1, \ldots c'_n$. They are symmetric, being unchanged by simultaneously permuting the c_i and the y_i , as well as by simultaneously permuting the c'_i and the y'_i . We find that they are identical, for all c_i, y_i, c'_i, y'_i . The proof proceeds by recurrence, in the following four steps.

Proof that $\mathcal{R}_{mn} = \mathcal{D}_{mn}$

Both \mathcal{R}_{mn} and \mathcal{D}_{mn} are rational functions of $c_1, \ldots c_m, c'_1, \ldots c'_n$. They are symmetric, being unchanged by simultaneously permuting the c_i and the y_i , as well as by simultaneously permuting the c'_i and the y'_i . We find that they are identical, for all c_i, y_i, c'_i, y'_i . The proof proceeds by recurrence, in the following four steps. 1. The case m = 1

► Calculation of \mathcal{R}_{1n} : If m = 1 then $s = \{s_1\}$ and either $s_1 = 0$ or $s_1 = 1$. If $s_1 = 0$, $W = \emptyset$, so is W'; so that we get $A_{s,s'} = B_{s,s'} = C_s = D_{s'} = 1$. ► Goto ABCD

Proof that $\mathcal{R}_{mn} = \mathcal{D}_{mn}$

Both \mathcal{R}_{mn} and \mathcal{D}_{mn} are rational functions of $c_1, \ldots c_m, c'_1, \ldots c'_n$. They are symmetric, being unchanged by simultaneously permuting the c_i and the y_i , as well as by simultaneously permuting the c'_i and the y'_i . We find that they are identical, for all c_i, y_i, c'_i, y'_i . The proof proceeds by recurrence, in the following four steps. 1. The case m = 1

► Calculation of \mathcal{R}_{1n} : If m = 1 then $s = \{s_1\}$ and either $s_1 = 0$ or $s_1 = 1$. If $s_1 = 0$, $W = \emptyset$, so is W'; so that we get $A_{s,s'} = B_{s,s'} = C_s = D_{s'} = 1$. Goto ABCD In the second case, $s_1 = 1$, $W = \{1\}$ so $W' = \{r\}$, r = 1..., n; while V is empty, so $B_{s,s'} = C_s = 1$, while $V' = \{1, \cdots, r-1, r+1, \cdots, n\}$ $A_{s,s'} = \prod_{j=1, j \neq r}^{n} (c_1 - c'_j), \quad D_{s'} = \prod_{j=1, j \neq r}^{n} (c'_r - c'_j).$

It follows that $\mathcal{R}_{1n} = 1 + \sum_{r=1}^{n} y_1 y'_r \prod_{j=1, j \neq r}^{n} \frac{c_1 - c'_j}{c'_r - c'_j}.$

► Calculation of D_{1n}: The RHS of (1.1) is a determinant of dimension 1, so

$$\begin{aligned} \mathcal{D}_{1n} &= 1 + Y_{1,1} \sum_{r=1}^{n} \mathcal{B}_{1,r} Y_{r,r}' \mathcal{B}_{r,1}' \\ &= 1 - \frac{a_1 y_1}{b_1} \sum_{r=1}^{n} \frac{a_r' y_r'}{b_r' (c_1 - c_r')^2} \,, \end{aligned}$$

Foto ab
$$a_1 = \prod_{j=1}^n (c_1 - c_j'), \ b_1 = 1$$

 $a_r' = (c_r' - c_1), \ b_r' = \prod_{j=1, j \neq r}^n (c_r' - c_j')$

 Calculation of D_{1n}: The RHS of (1.1) is a determinant of dimension 1, so

$$\begin{aligned} \mathcal{D}_{1n} &= 1 + Y_{1,1} \sum_{r=1}^{n} \mathcal{B}_{1,r} Y_{r,r}' \mathcal{B}_{r,1}' \\ &= 1 - \frac{a_1 y_1}{b_1} \sum_{r=1}^{n} \frac{a_r' y_r'}{b_r' (c_1 - c_r')^2} \,, \end{aligned}$$

Foto ab

$$\begin{array}{c} a_1 = \prod_{j=1}^n (c_1 - c_j'), \ b_1 = 1 \\ \\ a_r' = (c_r' - c_1), \ b_r' = \prod_{j=1, j \neq r}^n (c_r' - c_j') \end{array}$$
We therefore obtain

$$\mathcal{D}_{1n} = 1 + \sum_{r=1}^{n} y_1 y_r' \prod_{j=1, j \neq r}^{n} \frac{c_1 - c_j'}{c_r' - c_j'}$$

2: Degree of the numerator polynomials

Consider \mathcal{R}_{mn} and \mathcal{D}_{mn} as functions of c_m . They are both rational functions. We show here that they are both of the form

 $\frac{\text{polynomial of degree } (n-1)}{b_m}$

2: Degree of the numerator polynomials

Consider \mathcal{R}_{mn} and \mathcal{D}_{mn} as functions of c_m . They are both rational functions. We show here that they are both of the form

 $\frac{\text{polynomial of degree } (n-1)}{b}$

b_m

▶ Degree for \mathcal{R}_{mn} : First consider the sum \mathcal{R}_{mn} as a function of c_m . • Goto ABCD Each term is plainly a polynomial divided by b_m . To determine the degree of this polynomial, consider the behaviour of \mathcal{R}_{mn} when $c_m \to \infty$. Then, writing c_m simply as c. If $m \in W$, then the numerator is proportional to $A_{s,s'}$. As the degree of the numerator is the number of elements of V', $A_{s,s'} \sim c^{n-\kappa(s)}$. In the denominator $C_s \sim c^{m-\kappa(s)}$. As $b_m \sim c^{m-1}$, $A_{s,s'}/C_s \sim c^{n-m} = c^{n-1}/c^{m-1}$. The degree of the numerator is therefore at most n-1. If $m \in V$, then the numerator is proportional to $B_{s,s'} \sim c^{m-\kappa(s)}$ so that $B_{s,s'}/C_s \sim c^{m-1}/c^{m-1}$. The degree of the numerator is therefore at most n - 1.

▶ Degree for D_{mn}: Now consider the determinant D_{mn} as a function of c_m. ▶ Goto ab

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Degree for \mathcal{D}_{mn} : Now consider the determinant \mathcal{D}_{mn} as a function of c_m . \bigcirc Goto ab At first sight there appear to be poles at $c_m = c'_i$, coming from \mathcal{B}_{mi} . However, they are cancelled by the factor a_m . Similarly, the ones in the element \mathcal{B}'_{im} of the matrix \mathcal{B}' are cancelled by the factor a'_i . So there are no poles at $c_m = c'_i$, for any j. There are poles at $c_m = c_i$ (for $1 \le i < m$) coming from the b_i, b_m factors in $\mathcal{B}_{ii}, \mathcal{B}_{mi}$, respectively, so there are simple poles in each of the rows i and m. This threatens to create a double pole in the determinant \mathcal{D}_{mn} . However, if $c_m = c_i$, the rows *i* and *m* of the matrix $(c_m - c_i)\mathcal{B}$ are equal and opposite. By replacing row i by the sum of the two rows (corresponding to pre-multiplying \mathcal{B} by an elementary matrix), we can eliminate the poles in row *i*. Hence there is only a single pole at $c_m = c_i$. The determinant is therefore a polynomial in c_m . divided by b_m .

Degree for \mathcal{D}_{mn} continued

▶ To determine the degree of this polynomial, consider the behaviour of \mathcal{D}_{mn} when $c_m = c \to \infty$.

$$\mathcal{B}_{ij} \sim c^{-1}$$
 if $i < m$, $\mathcal{B}_{ij} \sim c^{n-m}$ if $i = m$,

 $\mathcal{B}_{ij}' \sim c \hspace{0.1cm} ext{if} \hspace{0.1cm} j < m \,, \hspace{0.1cm} \mathcal{B}_{i,j}' \sim 1 \hspace{0.1cm} ext{if} \hspace{0.1cm} j = m \,.$

and hence the orders of the elements of the matrix product are given by $\begin{pmatrix} 1 & 1 & \dots & 1 & c^{-1} \\ 1 & 1 & \dots & 1 & c^{-1} \end{pmatrix}$

Since $n \ge m$, it follows that \mathcal{D}_{mn} grows at most as $\mathcal{D}_{mn} \sim c^{n-m}$. The numerator polynomial is therefore of degree at most n-1.

3. The case $c_m = c'_n$

▶ The sum \mathcal{R}_{mn} : Consider the case when $c_m = c'_n$. ◆ Goto ABCD If $m \in W$ and $n \in V'$, then from $A_{s,s'} = 0$. Similarly, If $m \in V$ and $n \in W'$, then from $B_{s,s'} = 0$. So the summand is zero unless either $m \in V$, $n \in V'$, or $m \in W$, $n \in W'$. In the first instance, $s_m = s'_n = 0$ ($m \in V$ or $n \in V'$.) The AB/CD factor is the same as if we replace m, n by m - 1, n - 1, respectively, except for a factor

$$\prod_{i \in W} \frac{c_i - c'_n}{c_m - c_i} \prod_{j \in W'} \frac{c_m - c'_j}{c'_j - c'_n}$$

Since $c_m = c'_n$, the factors in the product cancel, except for a sign. There as many elements in W as in W', so the sign products also cancel, leaving unity. Thus this contribution is exactly that obtained by replacing m, n by m - 1, n - 1.

▶ The sum \mathcal{R}_{mn} continued: In the second instance, $s_m = s'_n = 1$ (or $m \in W$ or $n \in W'$.). This time AB/CD has an extra factor

$$\prod_{j \in V'} \frac{c_m - c'_j}{c'_n - c'_j} \prod_{i \in V} \frac{c_i - c'_n}{c_i - c_m} = 1,$$

so this contribution to the sum is again that obtained by replacing m, n by m - 1, n - 1, except that now there is an extra factor $y_m y'_n$. Adding the two contributions, we see that

$$\mathcal{R}_{mn} = (1 + y_m y'_n) \mathcal{R}_{m-1,n-1}.$$

▶ Goto pf-rec

▶ The determinant \mathcal{D}_{mn} : Now look at the determinant when $c_m = c'_n$. Goto ab Since a_m and a'_n both contain the factor $c_m - c'_n$, the *m*th row of \mathcal{B} vanishes except for the element m, n, which is

$$\mathcal{B}_{m,n} = \prod_{j=1}^{n-1} (c_m - c'_j) / \prod_{j=1}^{m-1} (c_m - c_j) .$$

Similarly, the *n*th row of \mathcal{B}' vanishes except for

$${\cal B}_{n,m}' \;=\; \prod_{j=1}^{m-1} (c_n'-c_j) \left/ \prod_{j=1}^{n-1} (c_n'-c_j') \right. \;.$$

Since $c_m = c'_n$, we see that $\mathcal{B}_{m,n}\mathcal{B}'_{n,m} = 1$. It follows that the matrix is block-triangular

$$\underbrace{ \begin{smallmatrix} \frac{a_i}{b_i} = \frac{\prod_{j=1}^{n-1}(c_i - c'_j)}{\prod_{j=1, j \neq i}^{m-1}(c_i - c_j)} }_{\text{same for } a'_i/b'_i} I_m + Y \mathcal{B} Y' \mathcal{B}' = \begin{pmatrix} \mathbf{1} + \mathbf{y} \mathbf{b} \mathbf{y}' \mathbf{b}' & \cdots \\ \mathbf{0} & \mathbf{1} + y_m y'_n \end{pmatrix},$$

where 1, y, b, y', b' are the matrices for $\mathcal{D}_{m-1,n-1}.$ Hence

4. Proof by recurrence

The proof now proceeds by recurrence. Suppose $\mathcal{D}(m-1, n-1) = \mathcal{R}(m-1, n-1)$ for all c_i, c'_i . Then from the previous equations $\bigcirc \text{Goto pf-ccr}$ it is true that $\mathcal{D}_{m,n} = \mathcal{R}_{m,n}$ when $c_m = c'_n$. By symmetry it is also true for $c_m = c'_j$ for $j = 1, \ldots, n$. Thus $\mathcal{D}_{m,n} - \mathcal{R}_{m,n}$ is zero for all these *n* values. But from point 2 above, this difference (times b_m) is a polynomial in c_m of degree n-1. The polynomial must therefore vanish identically, so $\mathcal{R}_{m,n} = \mathcal{D}_{m,n}$ for arbitrary values of c_m . Since it is true for m = 1, it follows that

$$\mathcal{R}_{m,n} = \mathcal{D}_{m,n}$$

for all m, n.

This proves that the determinant is equal to the sum. Next, I will talk about the calculation of the determinant \mathcal{D}_{PQ} .

The expression for \mathcal{D}_{PQ}

$$D_{PQ} = \det[I_m + YBY'B^T]$$

where Y and Y' are diagonal matrices,

$$(Y)_{i,j} = y_i \delta_{ij}, \quad (Y')_{i,j} = y'_i \delta_{ij},$$

while B is $m \times m'$ (notation change $n \rightarrow m'$) Cauchy-like matrix with elements

$$B_{ij} = \frac{f_i f_j'}{c_i - c_j'}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The expression for \mathcal{D}_{PQ}

$$D_{PQ} = \det[I_m + YBY'B^T]$$

where Y and Y' are diagonal matrices,

$$(Y)_{i,j} = y_i \delta_{ij}, \quad (Y')_{i,j} = y'_i \delta_{ij},$$

while B is $m \times m'$ (notation change $n \rightarrow m'$) Cauchy-like matrix with elements

$$B_{ij} = \frac{f_i f_j'}{c_i - c_j'}.$$

The constants f_i and f_j are chosen as

$$f_i^2 = rac{\epsilon a_i}{b_i}, \ f_i'^2 = -rac{\epsilon a_i'}{b_i'}, \ \epsilon = \pm 1$$

so that B is orthogonal in the sense that

$$B^T B = I_{m'}$$
 if $m \ge m'$, $BB^T = I_m$ if $m \le m'$.

If F, F' are the diagonal matrices with elements $F_{i,i} = f_i$, $F'_{i,i} = f'_i$, then $\mathcal{B} = \epsilon F B F'^{-1}$, $\mathcal{B}' = -\epsilon F' B F^{-1}$ and $\epsilon^2 = 1$.

Alternative form for \mathcal{D}_{PQ}

Because B is orthogonal, we can write I_m in (1.1) as BB^T so that

$$\mathcal{D}_{PQ}(\alpha,\beta) = \det[UB^T],$$

where

$$U = B + YBY'$$
.

Thus the elements of U are

$$U_{ij} = \frac{f_i f'_j (1 + y_i y'_j)}{c_i - c'_j}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Alternative form for \mathcal{D}_{PQ}

Because B is orthogonal, we can write I_m in (1.1) as BB^T so that

$$\mathcal{D}_{PQ}(\alpha,\beta) = \det[UB^T],$$

where

$$U = B + YBY'$$
.

Thus the elements of U are

$$U_{ij} = \frac{f_i f'_j (1 + y_i y'_j)}{c_i - c'_j}$$

Definition of Δ

$$\Delta_{m,m'}(c,c') \;=\; rac{\prod\limits_{1 \leq i < j \leq m} (c_i - c_j) \prod\limits_{1 \leq i < j \leq m'} (c_j' - c_i')}{\prod\limits_{i = 1}^m \prod\limits_{j = 1}^{m'} (c_i - c_j')} \,.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The case P > Q, m = m'

The simplest case is when m = m' and all matrices are square.

$$\det(B^T) \det(B) = 1 \Longrightarrow \mathcal{D}_{PQ} = \det U/\det B$$
.

(ロ)、(型)、(E)、(E)、 E) の(の)

The case P > Q, m = m'

The simplest case is when m = m' and all matrices are square.

$$\det(B^T) \det(B) = 1 \Longrightarrow \mathcal{D}_{PQ} = \det U/\det B$$
.

Cauchy-like matrices

If A is the m by m matrix with entries

$$egin{array}{lll} {\cal A}_{ij} &=& \displaystylerac{1}{c_i-c_j'}\,, \end{array}$$

then it is a Cauchy matrix and its determinant is $\Delta_{m,m}(c,c')$. The matrix with elements

$$(B)_{ij} = \frac{-2 \, k' \, f_i f_j'}{\lambda_i^2 - {\lambda_j'}^2}$$

is said to be Cauchy-like, and has determinant

$$\det B = \Delta_{m,m}(\lambda^2, {\lambda'}^2) \prod_{i=1}^m (-2k' f_i f_i').$$

The determinant of U

For P > Q, m = m' we have

$$y_i = -\frac{1+k'-\lambda_i}{1-k'+\lambda_i}, \ y'_j = \frac{1-k'-\lambda'_j}{1+k'+\lambda'_j}.$$

Thus

$$1+y_iy_j' = \frac{2(\lambda_i+\lambda_j')}{(1-k'+\lambda_i)(1+k'+\lambda_j')}.$$

Also

$$c_i-c_j' = (\lambda_j'^2-\lambda_i^2)/2k'.$$

The determinant of U

For P > Q, m = m' we have

$$y_i = -\frac{1+k'-\lambda_i}{1-k'+\lambda_i}, \ y'_j = \frac{1-k'-\lambda'_j}{1+k'+\lambda'_j}.$$

Thus

$$1+y_iy_j' = \frac{2(\lambda_i+\lambda_j')}{(1-k'+\lambda_i)(1+k'+\lambda_j')}.$$

Also

$$c_i - c'_j = ({\lambda'_j}^2 - {\lambda_i}^2)/2k'$$
.

The elements of U are

$$U_{ij} = \frac{f_i f'_j (1 + y_i y'_j)}{c_i - c'_j} = \frac{-4 \, k' f_i f'_j}{(1 - k' + \lambda_i)(1 + k' + \lambda'_j)(\lambda_i - \lambda'_j)}$$

so U is a Cauchy-like matrix, similar to B. Analogously, its determinant is

$$\det U = \Delta_{m,m}(\lambda,\lambda') \prod_{i=1}^{m} \frac{-4k'f_if_i'}{(1-k'+\lambda_i)(1+k'+\lambda_i')}.$$

Order Parameter for m = m'

The f_i, f'_i cancel out of the ratio, leaving

$$\mathcal{D}_{PQ} = rac{\Delta_{m,m}(\lambda,\lambda')}{\Delta_{m,m}(\lambda^2,\lambda'^2)} \prod_{i=1}^m rac{2}{(1-k'+\lambda_i)(1+k'+\lambda'_i)}.$$

We have

$$\left[\frac{\Delta_{m,m'}(\lambda,\lambda')}{\Delta_{m,m'}(\lambda^2,\lambda'^2)}\right]^2 = \frac{\prod_{i=1}^m \prod_{j=1}^{m'} (\lambda_i + \lambda'_j)^2}{\prod_{1 \le i < j \le m'} (\lambda_i + \lambda_j)^2 \prod_{1 \le i < j \le m'} (\lambda'_j + \lambda'_i)^2} = \frac{\prod_{j=1}^{m'} 2\lambda'_j \mathcal{R}(\lambda'_j)}{2^{(m-m')^2} \prod_{i=1}^m \mathcal{R}(\lambda_i)/2\lambda_i}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

where

$$\mathcal{R}(\lambda) = \frac{\prod_{i=1}^{m} (\lambda + \lambda_i)/2}{\prod_{j=1}^{m'} (\lambda + \lambda'_j)/2} .$$

Order Parameter for m = m' continued

Using

$$\mathcal{Z}_P \; = \; \prod_{i=1}^m rac{4\lambda_i}{(1+\lambda_i)^2 - {k'}^2} \,, \; \; \mathcal{Z}_Q \; = \; \prod_{i=1}^{m'} rac{4\lambda_i'}{(1+\lambda_i')^2 - {k'}^2}$$

and

$$[\mathcal{M}_r]^2 = \frac{D_{PQ}^2}{\mathcal{Z}_P \mathcal{Z}_Q},$$

we find

$$\left(\mathcal{M}_r^{(2)}
ight)^2 \;=\; rac{\mathcal{R}(1+k')\prod_{j=1}^{m'}\mathcal{R}(\lambda'_j)}{\mathcal{R}(1-k')\prod_{i=1}^m\mathcal{R}(\lambda_i)}\,.$$

Order Parameter for m' = m + 1

Now consider the case when P > Q and m' = m + 1, so the matrices B, U are not square. We have

$$y_i = rac{-2k'}{(1+\lambda_i)^2 - {k'}^2} , \ y_j' = rac{(1-\lambda_j')^2 - {k'}^2}{2k'} .$$

Hence

$$1+y_iy_j' = \frac{(\lambda_i+\lambda_j')(2+\lambda_i-\lambda_j')}{(1+\lambda_i)^2-{k'}^2}.$$

We see that the factor $\lambda_i + \lambda'_i$ again cancels, leaving

$$U = U^{(1)} + U^{(2)},$$

where $U^{(1)}, U^{(2)}$ are matrices with elements

$$U_{ij}^{(1)} = \frac{-4k'f_if_j'}{(\lambda_i - \lambda_j')[(1 + \lambda_i)^2 - k'^2)]}, \quad U_{ij}^{(2)} = \frac{-2k'f_if_j'}{[(1 + \lambda_i)^2 - k'^2]},$$

respectively. Thus $U^{(2)} = \xi \eta^T$ where ξ, η are vectors and $(\eta)_j = f'_j$.

Consider the vector $B\eta$: it has entries $(B\eta)_i = f_i \mathcal{F}'(c_i)$ where

$$egin{aligned} \mathcal{F}'(c) &= \sum_{j=1}^{m'} rac{f_j'^2}{c-c_j'} = \sum_{j=1}^{m'} rac{\mathcal{P}_P(c_j')}{b_j'(c-c_j')} \quad \boxed{b_j' = \prod_{i
eq j, i=1}^{m'} (c_j' - c_i')} &= \mathcal{F}'(c) &= \gamma' + \mathcal{P}_P(c) / \mathcal{P}_Q(c) \,, \end{aligned}$$

where γ' is independent of c. Taking the limit $c \to \infty$, we obtain $\gamma' = 0$. It follows that $\mathcal{F}'(c)$ vanishes when $c = c_i$ (i = 1, ..., m), so $B \eta = 0$. Consequently, the $U^{(2)}$ term is zero, leaving

$$\mathcal{D}_{PQ} = \det[U^{(1)}B^T].$$

We define an m' by m' matrix

$$\hat{B} = \begin{pmatrix} B \\ \eta^{T}, \end{pmatrix}, \quad c\mathcal{F}'(c) = \sum_{j=1}^{m'} \frac{cf_{j}'^{2}}{c - c_{j}'} = \frac{c\mathcal{P}_{P}(c)}{\mathcal{P}_{Q}(c)}$$
$$\eta^{T}\eta = \sum_{j=1}^{m'} f_{j}'^{2} = 1,$$

it follows that $\hat{B}\hat{B}^T = I_{m'}$, i.e. \hat{B} is a square orthogonal matrix.

We also extend $U^{(1)}$ by adding the row $\eta^{\, T}$ to form the square matrix

$$\mathcal{U} = \begin{pmatrix} U^{(1)} \\ \eta^T \end{pmatrix} \Rightarrow \mathcal{U}\hat{B}^T = \begin{pmatrix} U^{(1)}B^T & U^{(1)}\eta \\ \eta^T B^T & \eta^T\eta \end{pmatrix} = \begin{pmatrix} U^{(1)}B^T & U^{(1)}\eta \\ \mathbf{0} & 1 \end{pmatrix}$$

We see that $\mathcal{U}\hat{B}^{T}$ is an upper-right block triangular matrix and det $\mathcal{U}\hat{B}^{T} = \det U^{(1)}B^{T}$. Using the orthogonality of \hat{B} ,

$$\mathcal{D}_{PQ} = \det \mathcal{U} / \det \hat{B}$$
.

The square matrices \hat{B} and \mathcal{U} are Cauchy-like, provided we take $f_{m+1} = -\lambda_{m+1}^2/2k'$ and then let $\lambda_{m+1} \to \infty$, so that $\hat{B}_{m',j} = -2k'f_{m+1}f'_j/(\lambda_{m+1}^2 - \lambda'^2_j) \to f'_j$, we obtain

$$\det \hat{B} = \Delta_{m,m'}(\lambda^2, {\lambda'}^2) \prod_{i=1}^m (2k'f_i) \prod_{j=1}^{m'} f'_j.$$

Similarly, all the elements U_{ij} of U are Cauchy like if now we take $f_{m+1} = -\lambda_{m+1}^3/4k'$ before letting $\lambda_{m+1} \to \infty$, so that

$$\mathcal{U}_{m+1,j} = -4k' f_{m+1} f_j' / (\lambda_{m+1} - \lambda_j) [(\lambda_{m+1} + 1)^2 - k'^2] \to f_j'$$

Again using the general formula, we find that

$$\det \mathcal{U} = \Delta_{m,m'}(\lambda,\lambda') \prod_{i=1}^m \frac{4k'f_i}{(1+\lambda_i)^2 - k'^2} \prod_{j=1}^{m'} f'_j.$$

Hence

$$\mathcal{D}_{PQ} = rac{\Delta_{m,m'}(\lambda,\lambda')}{\Delta_{m,m'}(\lambda^2,\lambda'^2)} \prod_{i=1}^m rac{2}{(1+\lambda_i)^2 - {k'}^2}.$$

We now obtain

$$\left(\mathcal{M}_{r}^{(2)}\right)^{2} = \frac{\prod_{j=1}^{m'} \mathcal{R}(\lambda_{j}')}{\mathcal{R}(1+k') \mathcal{R}(1-k') \prod_{i=1}^{m} \mathcal{R}(\lambda_{i})}.$$

Wiener-Hopf factorization

Let c, λ be two variables related as are c_i, λ_i . Noting that $\lambda_i^2 - \lambda^2 = 2k'(c - c_i)$, it follows from the definition of \mathcal{R} that

$$\mathcal{R}(\lambda) \mathcal{R}(-\lambda) = (k'/2)^{m-m'} \mathcal{P}_P(c)/\mathcal{P}_Q(c),$$

where

$$\mathcal{P}_{P}(c) = \prod_{j=1}^{m} (c - c_{j}) = (c + 1)^{m} P_{P}(w),$$

in which

$$P_{P}(t^{N}) = t^{-P} \sum_{n=0}^{N-1} \omega^{-nP} \left(\frac{1-t^{N}}{1-\omega^{n}t}\right)^{L}$$
$$= t^{-P} \left[\frac{1-t^{N}}{1-t} + \sum_{n=1}^{N-1} \omega^{-nP} \left(\frac{1-t^{N}}{1-\omega^{n}t}\right)^{L}\right]$$

Using these equations, this can be written as

$$\mathcal{R}(\lambda) \mathcal{R}(-\lambda) = [k'(c+1)/2]^{m-m'} t^{Q-P} \mathcal{W}(\lambda),$$

Wiener-Hopf factorization1

where

$$egin{aligned} \mathcal{W}(\lambda) &= \mathcal{W}_{\mathcal{P}}(\lambda)/\mathcal{W}_{\mathcal{Q}}(\lambda)\,, \ \mathcal{W}_{\mathcal{P}}(\lambda) &= 1 + \sum_{n=1}^{N-1} \omega^{n(\mathcal{P}+\mathcal{L})} \left(rac{1-t}{\omega^n-t}
ight)^{\mathcal{L}} \end{aligned}$$

٠

.

These t, w, c are related to λ . In particular,

$$t^{N} = w = \frac{c-1}{c+1} = \frac{(1-k')^{2} - \lambda^{2}}{(1+k')^{2} - \lambda^{2}} = \left[\frac{1-k'+\lambda}{1+k'+\lambda}\right] \left[\frac{1-k'-\lambda}{1+k'-\lambda}\right]$$

The function $\mathcal{R}(\lambda)$ is analytic in the RHS and is proportional to $(\lambda/2)^{m-m'}$ when $\lambda \to \infty$. It follows from

$$\frac{k'}{2}(c+1) = \frac{(1+k')^2 - \lambda^2}{4} = \left[\frac{1+k'+\lambda}{2}\right] \left[\frac{1+k'-\lambda}{2}\right],$$

that

$$\mathcal{R}(\lambda) \;=\; \left(rac{1+\lambda+k'}{2}
ight)^{m-m'} \; \left(rac{1-k'+\lambda}{1+k'+\lambda}
ight)^{(Q-P)/N} \mathcal{W}_+(\lambda) \,.$$

where Wiener-Hopf factorization is performed on $\mathcal{W}(\lambda)$:

$$\mathcal{W}(\lambda) \;=\; \mathcal{W}_+(\lambda)\mathcal{W}_-(\lambda)\,,$$

and for $\Re(\lambda) \geq 0$,

 \mathcal{R}

$$\log \mathcal{W}_{+}(\lambda) = -\frac{1}{2\pi \mathrm{i}} \int_{-\mathrm{i}\,\infty-\epsilon}^{\mathrm{i}\,\infty-\epsilon} \frac{\log \mathcal{W}(\lambda)}{\lambda'-\lambda} \,\mathrm{d}\lambda'$$

the integration being up a vertical line just to the left of the imaginary axis. Baxter has also shown that in the limit $L \to \infty$, $\mathcal{W}_+(\lambda) \to 1$ for for $\Re(\lambda) \ge 0$. It follows that

$$\frac{\prod_{j=1}^{m'} \mathcal{R}(\lambda'_j)}{\prod_{i=1}^m \mathcal{R}(\lambda_i)} = \mathcal{R}(1+k')^{m'-m} \left[\frac{\mathcal{R}(1+k')}{\mathcal{R}(1-k')}\right]^{(Q-P)/N},$$

(1+k') = (1+k')^{m-m'+(P-Q)/N}, $\mathcal{R}(1-k') = (1-k')^{(Q-P)/N}$

Order Parameter

m=m'

$$\left(\mathcal{M}_{r}^{(2)} \right)^{2} = \frac{\mathcal{R}(1+k') \prod_{j=1}^{m} \mathcal{R}(\lambda'_{j})}{\mathcal{R}(1-k') \prod_{i=1}^{m} \mathcal{R}(\lambda_{i})} = (1-k'^{2})^{(P-Q)[N-(P-Q)]/N^{2}} \\ = (1-k'^{2})^{r(N-r)/N^{2}} .$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Order Parameter

m=m'

$$ig(\mathcal{M}_r^{(2)}ig)^2 \ = \ rac{\mathcal{R}(1+k')\prod_{j=1}^m \mathcal{R}(\lambda'_j)}{\mathcal{R}(1-k')\prod_{i=1}^m \mathcal{R}(\lambda_i)} = (1-k'^2)^{(P-Q)[N-(P-Q)]/N^2} \ = (1-k'^2)^{r(N-r)/N^2} \,.$$

m'=m+1

$$\left(\mathcal{M}_{r}^{(2)}\right)^{2} = \frac{\prod_{j=1}^{m'} \mathcal{R}(\lambda_{j}') / \prod_{i=1}^{m} \mathcal{R}(\lambda_{i})}{\mathcal{R}(1+k') \mathcal{R}(1-k')}$$
$$= \frac{1}{\mathcal{R}(1-k')} \left[\frac{\mathcal{R}(1+k')}{\mathcal{R}(1-k')}\right]^{(Q-P)/N}$$
$$= (1-k'^{2})^{r(N-r)/N^{2}}.$$

Open Questions

Onsager Algebra

$$\sum_{k=-n}^{n} \alpha_{\pm k} A_{k-l} = 0, \quad \sum_{k=-n}^{n} \alpha_{\pm k} G_{k-l} = 0, \quad f(z) \equiv \sum_{k=-n}^{n} \alpha_k z^{k+n}.$$

(ロ)、(型)、(E)、(E)、 E) の(の)

What are these coefficients α_k ? What is the dimension *n*?

Open Questions

Onsager Algebra

$$\sum_{k=-n}^{n} \alpha_{\pm k} A_{k-l} = 0, \quad \sum_{k=-n}^{n} \alpha_{\pm k} G_{k-l} = 0, \quad f(z) \equiv \sum_{k=-n}^{n} \alpha_{k} z^{k+n}.$$

What are these coefficients α_k? What is the dimension n?
▶ Serre Relation not yet proven for all cases: The identity

$$\mathcal{I}_{N}(\{\mu_{j}\};\{\lambda_{j}\}) = (\ell - j + 1) + \overline{\mathcal{I}}_{N}(\{\lambda_{j}\};\{\mu_{j}\})$$

enables us to prove

$$[[[\mathbf{x}_{0,Q}^{+},\mathbf{x}_{1,Q}^{-}],\mathbf{x}_{1,Q}^{-}]\mathbf{x}_{1,Q}^{-}](\mathbf{x}_{1,Q}^{-})^{n}|\{0\}\rangle=0$$

Is there another identity which will enable us to prove the Serre relation?

Open Questions

Onsager Algebra

$$\sum_{k=-n}^{n} \alpha_{\pm k} A_{k-l} = 0, \quad \sum_{k=-n}^{n} \alpha_{\pm k} G_{k-l} = 0, \quad f(z) \equiv \sum_{k=-n}^{n} \alpha_{k} z^{k+n}.$$

What are these coefficients *α_k*? What is the dimension *n*?
Serre Relation not yet proven for all cases: The identity

$$\mathcal{I}_{N}(\{\mu_{j}\};\{\lambda_{j}\}) = (\ell - j + 1) + \overline{\mathcal{I}}_{N}(\{\lambda_{j}\};\{\mu_{j}\})$$

enables us to prove

$$[[[\mathbf{x}_{0,Q}^{+},\mathbf{x}_{1,Q}^{-}],\mathbf{x}_{1,Q}^{-}]\mathbf{x}_{1,Q}^{-}](\mathbf{x}_{1,Q}^{-})^{n}|\{0\}\rangle=0$$

Is there another identity which will enable us to prove the Serre relation?

Eigenvectors in

$$g_{2\ell}(r;k;q,\cdots,q) = \frac{1}{N} \sum_{Q=0}^{N-1} \sum_{j=1}^{J} \left[\frac{\Delta_j^P}{\Delta_{\max}^0} \right]^{2\ell} \langle \mathcal{Y}_{\max}^Q | \mathcal{Y}_j^P \rangle \langle \mathcal{Y}_j^P | \mathcal{Y}_{\max}^Q \rangle$$

Do we need to know all the eigenvectors $|\mathcal{Y}_{i}^{Q}\rangle_{2}^{2}$, z = z = 2