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We find raising and lowering operators distinguishing the degenerate states for the
Hamiltonian H = x(K + 1

2
)Sz + K · S at x = ±1 for spin 1 that was given by Happer

et al.1,2 to interpret the curious degeneracies of the Zeeman effect for condensed vapor
of 87Rb. The operators obey Yangian commutation relations. We show that the curious
degeneracies seem to verify the Yangian algebraic structure for quantum tensor space
and are consistent with the representation theory of Y (sl(2)).

1. Indecomposible Quantum Tensor Space

In Quantum Mechanics, a state is described in terms of wave function, i.e. |ψ > is
a vector in Hilbert space. If two particles described by |ψ12 > are entangled, there
should be “overlapping effect” between V1 and V2, i.e., besides V1 and V2 we should
deal with V1 ⊗V2, the quantum tensor space. The simplest example is Breit-Rabi’s
Hamiltonian:

HBR = K · s + xks3, (1.1)

where s and K stand for the spins of electron and atomic nucleus, respectively.
K2 = K(K + 1). On account of the conservation of K2 and m = K3 + s3 two
independent states are introduced:

α1 >= |K, m − 1
2

> |1
2
,
1
2

>, α2 >= |K, m +
1
2

> |1
2
,−1

2
> . (1.2)
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For a fixed m with the basis Φ =
(
|α1 >

|α2 >

)
, we have

H
(m)
BR = −1

4
+

1
2
[(xk + m)σ3 +

√
k2 − m2σ1], (1.3)

where σ1 =
(

0 1
1 0

)
and σ3 =

(
1 0
0 −1

)
are Pauli matrices. Eq. (1.3) can be

diagonalized through a rotation:1

U(ϕm)H(m)
BR U(ϕm)−1 = H

(m)
BR (ϕm), Φ(m)(ϕm) = U(ϕm)Φ(m), (1.4)

where

Φ(m)(ϕm) =
(

(cos ϕm

2 )|α1 > −(sin ϕm

2 )|α2 >

(sin ϕm

2 )|α1 > +(cos ϕm

2 )|α2 >

)
, (1.5)

E = −1
4
− ωmσ3, (1.6)

and

cos ϕm =
(xk + m)

ωm
, ω2

m = (1 + x2)k2 + 2xmk. (1.7)

Noting that the rotation angle ϕm is m-dependent and m here cannot be replaced
by the operator K3 + s3. This is because of the nonlinearity in m, i.e., the rota-
tion should depend on the history. Observing Eq. (1.6) and Eq. (1.7) there is not
degeneracy for the energy E, because the vanishing ωm means a complex magnetic
field.

However, there appears degeneracies for spin-1 in the experiment.2 Why the
Zeeman effect vanishes at the particular value of applied field? This is the main
subject concerned in this paper.

2. Introduction of the Curious Degeneracies

The curious degeneracies observed in the experiment for condensed vapor of 87Rb
and 85Rb1 at 220◦ under pressure and applied magnetic field B ∼ 1500 Gauss
are converted into “anti-level-crossing” for the triplet (S = 1).1,2 To describe the
Hamiltonian of a triplet dimer neglecting the quadrapole interaction, Happer et al.
introduced1,2

H = K · S + x(K +
1
2
)Sz, (2.1)

and pointed out that when x = 1 there appear the curious degeneracies for S = 1,
where K and S are angular momentum and spin, respectively, K2 = K(K +1) and
S2 = S(S + 1) with S = 1. In Ref. 1, the eigenvectors corresponding to E = − 1

2

had been given and an elegant discussion was made. However, there remain the
following essential questions:

• Why the curious degeneracies occur only for S = 1?
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• How to distinguish the degenerate states?
We would like to present the answer in this paper.

For x = ±1, the eigenequation

HΨm = EmΨm (2.2)

has three types of solutions whose eigenstates are denoted by αT , αD and αB with
the corresponding energies ET > ED > EB , respectively. For the D-set, HαDm =
− 1

2αDm, there appear the curious degeneracies called Happer degeneracies that has
been supported by the experiment.2 The results of Happer can be summarized in
the Table 1 (G = K + S, G3 = m).

G =
K + 1

G =
K

G =
K − 1

D − set T − set B − set

K + 1 −− → αT,m=K+1

K −− −− → αD,m=K αT,m=K

K − 1 −− −− −− → αD,m=K−1 αT,m=K−1 αB,m=K−1

...
...

...
...

...
...

...
...

m −− −− −− → αDm αTm αBm
...

...
...

...
...

...
...

...
−K + 1 −− −− −− → αD,m=−K+1 αT,m=−K+1 αB,m=−K+1

−K −− −− → αT,m=−K αB,m=−K

−K − 1 −− → αD,m=−K−1

Table 1

We emphasize that the states with m = K + 1 and m = −K for x = 1 (m =
−K−1 and m = K for x = −1) in the D-set are excluded. For simplicity we discuss
the case for x = 1 henceforth. The eigenstates of H are linear combinations of the
states of G = K + 1, K and K − 1. Since the shortage of states with m = K + 1
and m = −K it is not surprise to appear the unusual thing to distinguish the
m-dependent states, for example in Eq. (1.6).

3. Yangian as the Raising and Lowering Operator for the
Degenerate States

Let us first recall how to establish the Lie algebraic structure in Quantum Mechan-
ics. For the given (2K +1) states denoted by |K, K3 = K >, |K, K3 = K − 1 >,· · ·,
and |K, K3 = −K >, the raising (or lowering) operator K+ (or K−) can be intro-
duced such that for any m = K3,

K±|K, m >∼ |K, m ± 1 >, (3.1)

and K ± |K,±K >= 0. Through checking the commutation relations for K± and
K3, we say that the Lie algebraic structure is found if the commutation relations are
closed. It is emphasized that there is not m-dependence in the operators K± in Eq.
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(3.1), because the eigenvalues of K3 are uniform. However, suppose the eigenvalues
are not uniform, the raising and lowering operators should depend on m, i.e., it
should indicate on which state the operators act. Actually, such “starting state”
dependence occurs more often in nonlinear models.3

After calculations, we have found the raising operator for the D-set in the table
1 (at x = ±1):

J+ = (m + K + 1)G+ + j+(a, b), (3.2)

where

j+(a, b) = aS+ + bK+ +
1
2
(S3K+ − S+K3), (3.3)

and

a = −K

2
, b − a =

1
2
(K + 1), G+ = K+ + S+. (3.4)

Noting that (b − a) is independent of m. Whereas

J− = −(m + K)G− + j′−(c, d), (3.5)

where

j′−(c, d) = cS− + dK− − 1
2
(S3K− − S−K3), (3.6)

and

c =
K

2
+

1
2
, d − c = −K

2
, G− = K− + S−. (3.7)

It can be checked that for x = 1, J+|αD,m=K >= 0 and J+|αD,m=−K−1 >= 0.
Obviously the J± shown in Eq. (3.2) and Eq. (3.5) are special form of the

Yangian operator:

J = λG + j, (3.8)

where

j = µK + γS − i

2
S × K, (3.9)

and λ, µ, γ are arbitrary constants. A set formed by both J and j satisfy Y (sl(2))
defined by Drinfeld,4 and is related to the Yang-Baxter equations.5,6

4. Yangian Algebra

The commutation relations for J and the total angular momentum I = G = S+K
form the so-called Yangian algebra associated with sl(2). The parameters µ and γ

play the important role in the representation theory of Yangian given by Chari and
Pressley.7 Many chain models possess the Yangian symmetry, for example, for 1-d
Hubbard model and Haldane-Shastry model.8 The set {I, J} = Y (sl(2)) obeys the
commutation relations of Y (sl(2)) (A± = A1 ±

√
−1A2):

[I3, I±] = ±I±, [I+, I−] = 2I3, (sl(2)); (4.1)
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[I3, J±] = [J3, I±] = ±J±, [I+, J−] = [J+, I−] = 2J3, (4.2)

(i.e. [Ii, Jj ] =
√
−1εijkJk) and nonlinear relation

[J3, [J+, J−]] =
1
4
I3(I+J− − J+I−) (4.3)

that forms an infinitely dimensional algebra. All the other relations given in Ref. 4
can be obtained from Eq. (4.1)–Eq. (4.3) together with the Jacobian identities.9,10

The essential difference between the representations of Yangian algebras and
those of Lie algebras is the appearance of the free parameters µ and γ whose origi-
nally physical meaning is one-dimensional momentum. Their special choice specifies
a particular model. Applying the Yangian representation theory to Hydrogen atom,
it yields the correct spectrum (∼ n−2) that is the simplest example of the appli-
cation of Yangian in Quantum Mechanics.10 Now the Happer’s degeneracies can
be viewed as another example. Furthermore, we would like to make the following
remarks:

(a) The elements of J+ given by Eq. (3.2)

< αDm′ |J+|αDm >∼< αDm′ |K+|αDm >�= 0,

because < αDm′ |S|αDm >=< αDm′ |S×K|αDm >= 0, as pointed out in Ref. 1 (see
Eq. (2.23) in Ref. 1). This indicates that the role played by J+ in the “D-direction”
is like that played by K+. Why do we need a Yangian? The terms of S+ and (K×S)+
should be added to guarantee < αTm′ |J+|αDm >=< αBm′ |J+|αDm >= 0, namely,
if only acting K+ on αDm it yields non-vanishing transitions to αTm′ and αBm′

that no longer preserves the D-set. The part other than K+ in the Yangian J+

given by Eq. (3.2) exactly cancel the nonvanishing contribution received from “T -”
and “B-direction”.

(b) Observing the process determining parameters a and b in Eq. (3.3), the
reason for the existence of solution of a and b is clear. For S = 1, the eigenvector
of H is formed by three base. Apart of an over-all normalization factor there are
two independent coefficients. In requiring J+αDm ∼ αDm+1, we have to compare
the coefficients of the independent base in J+αDm and αDm+1 to determine the
unknown parameters a and b. For spin S = 1, there are just two equations for a

and b. However, for spin S > 1, in general, one is unable to find solution for a

and b to fit more than two equations. Therefore, the Yangian description of the
curious degeneracies admits only S = 1 for arbitrary K. This is consistent with
experiment.1,2

(c) In fact, the parameters appearing in J+ and J− exactly coincide with the
conditions of the existence of the subrepresentations of the Yangian.7 Following
the theorem in Ref. 7, for a − b = −K

2 − 1
2 the subspace spanned by vectors with

G = K + 1 is the unique irreducible subrepresentation of Y (sl(2)), that is, the
states with G = K + 1 are stable under the action of J. Note that the existence
and uniqueness of subrepresentation is only related to the difference of a and b.
Moreover, for the given a and b in Eq. (3.4), the action of J+ on the states with
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G = K + 1 is given by J+αG=K+1,m = (m + K + 1)G+αG=K+1,m and at the same
time, J+ will make the states with G = K and G = K − 1 transit to G = K + 1,
but not vice versa, called “directional transition”,9 i.e. the transition given rise
by Yangian goes in one way. Thus, for the given a and b in Eq. (3.4), the set of
states with G = K + 1 and D-set are stable under the action of J+ simultaneously.
For c − d = K

2 , G = K − 1 is the unique irreducible subrepresentation and for
c and d given by Eq. (3.7), acting J− on the states with G = K − 1, we have
J−αG=K−1,m = −(m + K)G−αG=K−1,m. Therefore the representation theory of
Y (sl(2)) tells that the relationship between a − b and c − d given by Eq. (3.4) and
Eq. (3.7), respectively, should be held to preserve the states with G = K + 1 (or
G = K − 1) that possesses Lie algebraic behavior.

(d) We have seen that the J− is not the conjugate of J+. Such a phenomenon
is reasonable because αDm is neither the Lie-algebraic state nor symmetry of H.
In fact, if α is not an eigenstate of I2 (I belongs to a Lie algebra) and I+α ∼ α1,
we cannot have I−α1 ∼ α. Now there is the similarity for Yangian. Moreover, the
D-set is not a subrepresentation of Y (sl(2)), i.e., D-set cannot be stable under all
the actions of J, but stable under J+ and J− with the different parameters which
just satisfy the condition for subrepresentation of Yangian.

(e) The third component of J takes the form J3 = aSz + bKz +S+K−−S−K+.
For any parameters, the action of J3 will not keep the D-set. But, with the suitable
a − b = 1, the operator J3 + 2(2K + 1)S2

z will keep the D-set.
(f) We emphasized that the m appearing in Eq. (3.2) and Eq. (3.5) cannot be re-

placed by the operator G3. It appears as a parameter in Yangian. The m-dependents
only indicates that the raising or lowering operation depends on “history” in dif-
ference from the Lie algebraic structure.

In conclusion we have read of a new type of algebra structure(Yangian) from
the Happer’s degeneracies and such an algebra had been ready by Drinfeld.4 All
the analysis coincides with the representation theory of Y (sl(2))7 for the special
choice of a, b in J+ and c, d in J−. It also leads to the fact that only S = 1 is allowed
to yield the curious degeneracies. If the Zeeman effect tells Lie algebra, then the
curious degeneracies possibly tell the existence of Yangian.
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