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Preliminary Exam January 2–5, 2008

Day 1: Classical Mechanics

Wednesday, January 2, 2008

9:00 a.m.–12:00 p.m.

Instructions:

1. Write the answer to each question on a separate sheet of paper. If more

than one sheet is required, staple all the pages corresponding to a single

question together in the correct order. But, do not staple all problems

together. This exam has five questions.

2. Be sure to write your exam identification number (not your name or
student ID number!) and the problem number on each problem sheet.

3. The time allowed for this exam is three hours. All questions carry the
same amount of credit. Manage your time carefully.

4. If a question has more than one part, it may not always be necessary to
successfully complete one part in order to do the other parts.

5. The exam will be evaluated, in part, by such things as the clarity and
organization of your responses. It is a good idea to use short written

explanatory statements between the lines of a derivation, for example.
Be sure to substantiate any answer by calculations or arguments as
appropriate. Be concise, explicit, and complete.

6. The use of electronic calculators is permissible and may be needed for
some problems. However, obtaining preprogrammed information from

programmable calculators or using any other reference material is strictly
prohibited. The Oklahoma State University Policies and Procedures on

Academic Integrity will be followed.



There are five problems. Answer all five. Each problem carries

20 points. Include all relevant intermediate steps.

Problem 1

θ

l
Two cylinders are given, both of mass m = 50.0 kg and radius R = 0.400 m.

One cylinder (h) is hollow with all mass a distance R from its axis, whereas
the other cylinder (s) is solid and of uniform density. At time t = 0 each

cylinder is rolling on a horizontal surface with speed v = 5.00 m/s towards an
incline with slope θ = 20.0◦, which begins l = 6.00 m further on (see figure
above). Assuming the cylinders roll without slipping and without losses of

energy due to friction, answer the following questions for each of the two
cylinders:

(a) What is its moment of inertia Ii , (i = h, s), about its symmetry axis?
Derive your results.

(b) How far up the incline will each cylinder travel? Give your answer as
the distance di along the surface of the incline.

(c) How long does it take each cylinder to return to its starting point at

t = 0?

(d) How big an average force is needed to stop each cylinder after its return

to the starting point, assuming the force acts over an additional distance
of D = 2.20 m?



Problem 2

The gravitional sphere of influence of a planet. Consider a planet (mass
m) and its small moon (mass µ) orbiting a star (mass M), as illustrated in
this top view.
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For a small-enough moon orbit, the moon and planet are effectively a two-
body system. However, beyond some critical orbital radius rH from the

planet, called the Hill radius, the moon is no longer firmly gravitationally
“bound” to the planet. Instead, the star’s influence will make the moon
susceptible to being “removed” from the planet through the influences of the

star and any other planets in the vicinity.
Work through steps (a)–(e) below to show that the Hill radius rH can be

approximated as

rH =

(
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)
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Assume all orbits are circular, and consider the specific geometry in which
the moon is located between the centers of the star and planet.

(a) Write a general expression for the magnitude of the acceleration due to
Newtonian gravity of an object located an arbitrary distance d from the

star.

(b) Write a general expression for the magnitude of the centrifugal acceler-
ation experienced by an object circling the star in terms of its orbital

distance d and steady angular speed ω.



(c) Apply the results from parts (a) and (b) to find an expression for the
angular velocity of an object in circular orbit around the star in terms

G, M , and d.

(d) Observe that the gravitationally bound moon has an average angular

speed around the star that equals the planet’s, and therefore lower than
that which it would have were it alone in its orbit. This is possible
because of the planet’s gravity. Use these considerations to write an

equation relating the gravitational accelerations of the moon due to the
planet and the star, and the centrifugal acceleration of the moon around

the star at the distance rH from the planet.

(e) Express the foregoing result in terms of the ratio rH/R ≪ 1. Then,

keeping only zero- and first-order terms in that ratio, and using simple
analytic approximations, obtain the requested expression for rH .

Problem 3

A spring pendulum consists of a point mass m attached to one end of a
massless spring of spring constant k and unstressed length l obeying Hooke’s

law. The other end of the spring is pivoted and the system moves in a vertical
plane.

(a) Obtain the Lagrangian for the system in terms of suitable generalized
coordinates. Write down the Lagrange’s equations of motion.

(b) Construct the Hamiltonian for the system. Show that the Hamilton’s
equations contain the same information as the Lagrange’s equations.



Problem 4
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A rigid, uniform, thin bar of mass M and length L is attached to two identical

massless springs (each of force constant k) as shown in the figure. Assume
the motion is constrained to the x-z plane and the center of mass moves

only vertically along the z–axis direction. Find the normal frequencies of
small oscillations of the system about its equilibrium position. Express the

frequencies in terms of k, M , and L.

Problem 5

a
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A thin, uniform disk has a circular hole cut out from its center as shown in

the accompanying figure. The radius of the disk is b, while that of the hole
is a, and the resulting object has a total mass M .

(a) Obtain the moment of inertia tensor of the object about the center of
mass. What are the principal moments and principal axes?

(b) If the object rotates about an axis passing through a point on the outer
edge of the disk and perpendicular to the plane of the disk with an

angular speed ω, what is its kinetic energy?


