
Department of Physics

Preliminary Exam January 2–5, 2008

Day 2: Electricity, Magnetism and Optics

Thursday, January 3, 2008

9:00 a.m.–12:00 p.m.

Instructions:

1. Write the answer to each of questions 2–5, as well as the separate parts

of question 1, on a separate sheet of paper.

If more than one sheet is required, staple all corresponding pages to-
gether in the correct order. But, do not staple all problems together.

This exam has five questions.

2. Be sure to write your exam identification number (not your name or

student ID number!) and the problem number on each problem sheet.

3. The time allowed for this exam is three hours. Each question carries the
amount of credit indicated; they are not weighted equally. Manage your

time carefully.

4. If a question has more than one part, it may not always be necessary to
successfully complete one part in order to do the other parts.

5. The exam will be evaluated, in part, by such things as the clarity and
organization of your responses. It is a good idea to use short written

explanatory statements between the lines of a derivation, for example.
Be sure to substantiate any answer by calculations or arguments as
appropriate. Be concise, explicit, and complete.

6. The use of electronic calculators is permissible and may be needed for
some problems. However, obtaining preprogrammed information from

programmable calculators or using any other reference material is strictly
prohibited. The Oklahoma State University Policies and Procedures on

Academic Integrity will be followed.



Additional instructions and information:
There are five problems; the point value of each problem is given, and they

add up to 100. Each problem should be started on a separate sheet. In

addition, the point value of each part of Problem 1 is given, and each part of

that problem should be done on a separate sheet. Do not staple the parts of

Problem 1 together.

The problems are written using the SI system of units; if you prefer to use

the cgs-Gaussian system, you may simply replace 4πǫ0 by 1 in the relevant
equations given in the problems.



Problem 1

(25 points) The parts of this problem are independent short problems that

do not require long answers. Work each part on a separate sheet and do not

staple different parts together.

(a) (7 points) Consider two spherical conductors of different diameters; the

two spheres are held at fixed positions very far apart from one another,
and initially, both are uncharged. Then, the first sphere is charged to a

total charge Q and brought into electrical contact with the second sphere
by means of a negligibly thin conducting wire which is subsequently

removed; as a result, there is now a charge q on the second sphere.
The first sphere is then recharged to Q and again brought into electrical
contact with the second, and this process is repeated ad infinitum. What

is the final charge on the second sphere?

(b) (6 points) Consider a planar interface between a positive-refractive-
index medium (n1 = 1) and a negative-index material (n2 < 0). If

an object is placed a distance L from the surface on the n1 = 1 side, find
the location of the image that is formed on the n2 < 0 side.

(c) (6 points) We can compute the total energy U of a charged particle by

using the point charge model of a uniform sphere of radius a and its
associated charge q uniformly distributed on the surface. Knowing that

the magnitude of the electric field (of a point charge) is q/4πǫ0r
2, and

that the energy density is

u =
ǫ0E

2

2
=

q2

32π2ǫ0r4
,

the total energy can be calculated by integrating over all space (with the
lower limit of integration variable r as a and the upper limit as ∞):

U =
1

2

q2

4πǫ0

1

a
.

Here’s the problem: All is well with this calculation until we set a = 0

for a point charge. Note that because the energy density of the field
varies inversely as the fourth power of the distance from the center, its



volume integral is infinite. Is this acceptable? That is, can there be any
observable consequences of having an infinite amount of energy in the

field surrounding a point charge?

(d) (6 points) The beam from a diffraction limited He:Ne laser has a wave-

length of 632 nm, a peak intensity of 10 W/ cm2, and can be considered
to have a diameter of 1 mm as it leaves the laser. The laser is aimed at
a mirror placed on the moon by the Apollo astronauts. Estimate the

peak intensity of the beam as it strikes the mirror. (The distance from
the surface of the Earth to the surface of the Moon is approximately

3.76 × 105 km.)

Problem 2

(15 points) A bar of length l, mass m, and resistance R slides without friction

on resistanceless rails in a uniform magnetic field. The rails are connected by
a battery of emf E and a capacitor of capacitance C, as shown. The switch

is closed at time t = 0, when the bar is at rest and there is no charge on the
capacitor.

(a) Find the equation of motion of the bar.

(b) What is the final charge on the capacitor?



Problem 3

(20 points) Consider a uniform sphere of radius a with a constant volume
charge density ρ and total charge Q.

(a) Using any method, show that the general expressions for potential at

any point inside (φi) or outside (φo) the sphere are given by:

φi(r) =
ρ

6ǫ0

(

3a2
− r2
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Q

8πǫ0a


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a2


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and

φo(r) =
ρa3

3ǫ0r
=

Q

4πǫ0r
,

respectively.

(b) Calculate the electric fields inside, Ei, and outside, Eo, using the results

of part (a) (or otherwise).

(c) Calculate the total potential energy of this system using the results of

part (a). Express your final answer in terms of the total charge Q.

(d) Calculate the energy density for outside and inside the sphere. Show
that the total potential energy calculated from the energy density is the

same as found in part (c).

(e) What fraction of the total energy in part (c) is now regarded as being

outside of the sphere?



Problem 4

(20 points) Apart from its many other uses, a Michelson interferometer
can be employed as a spectrometer. To see how this comes about we will
initially consider a light source with a very simple spectrum, a plane wave

with wavenumber k0. This light is incident on the beam splitter of the
Michelson interferometer and the interferometer has a path length difference

of d between its two arms.

(a) Calculate the intensity at the output of the interferometer as a function

of d.

(b) If instead the input light consists of multiple plane waves with different
wavenumbers, the intensity can be calculated by adding the intensities

of each of the individual plane waves together. Why does this work (i.e.,
why doesn’t the light from one plane wave seem to interfere with light

from another plane wave)?

(c) Using the results from parts (a) and (b), show that the intensity at

the interferometer’s output for a source with a uniform distribution of
wavenumbers between k1 = k0 −

∆k
2

and k2 = k0 + ∆k
2

with a total

intensity of I0 is

I(d) = I0

[

1 + sinc

(

∆k d

2

)

cos k0d

]

.

(Note: sincx ≡
sin x

x .)

(d) If the source considered in part (c) consists of white light (wavelength

range 400 to 700 nm), approximately how many ”white light” fringes
will be visible as the path length difference is scanned through d = 0?
It may help to sketch the function given in part (c).



Problem 5

(20 points) A ferro-fluid is a super-paramagnetic (µ/µ0 ≫ 1) liquid that
becomes magnetized in an external magnetic field. Consider the following
experiment: A drop of ferro-fluid is placed on the surface of water in a glass.

It immediately spreads to form a uniform thin film on the water surface. A
linear bar magnet, vertically oriented, is brought down near the ferro-fluid

film. Remarkably, the film moves on the surface but away from the magnet
to leave a clear patch on the surface (see Fig. 1). The purpose of this problem

is to begin to explain this observation by following the hint below.

Fig. 1. Image A shows the ferro-fluid film uniformly spread on the surface. Image B shows the

film clearing from beneath the bar magnet and also coming in from the outer edges of the surface

to eventually form a ring of ferro-fluid on the water surface.

Hint: Consider the experimental geometry shown in Fig. 2. Assume the bar

magnet (dipole moment m) produces a dipole field as given by:
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Fig. 2. Sketch of the experimental setup, showing the magnetic dipole moment and its relation to

the water surface.

Calculate the energy density within the (initially) uniform thin film
as a function of the radial surface distance away from the axis of

the bar magnet. If the energy density changes as a function of ρ, there will
be a body force on the film, just as on particles pulled to the lowest potential

energy in a gravitational field.


