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Day 4: Thermodynamics and Statistical Physics

Friday, January 8, 2010

9:00 a.m. – 12:00 p.m.

Instructions:

1. Write the answer to each question on a separate sheet of paper. If
more than one sheet is required, staple all the pages corresponding to
a single question together in the correct order. But, do not staple all
problems together. This exam has five questions.

2. Be sure to write your exam identification number (not your name or
student ID number!) and the problem number on each problem sheet.

3. The time allowed for this exam is three hours. All questions carry the
same amount of credit. Manage your time carefully.

4. If a question has more than one part, it may not always be necessary
to successfully complete one part in order to do the other parts.

5. The exam will be evaluated, in part, by such things as the clarity and
organization of your responses. It is a good idea to use short written
explanatory statements between the lines of a derivation, for example.
Be sure to substantiate any answer by calculations or arguments as
appropriate. Be concise, explicit, and complete.

6. The use of electronic calculators is permissible and may be needed
for some problems. However, obtaining preprogrammed information
from programmable calculators or using any other reference material is
strictly prohibited. Oklahoma State University Policies and Procedures
on Academic Integrity will be followed.



Useful information:
Boltzmann constant:
Ideal gas constant:

Stirling’s approximation:

k = 1.38× 10−23 JK−1

R = 8.314 JK−1 mol−1

1 liter = 10−3 m3

1 atm = 1.013× 105 Pa
lnN ! = N lnN −N

Problem 1

A monoatomic ideal gas is taken clockwise around the rectangular path as
shown in the figure.

(a) How much work is done by the gas per cycle?

(b) If there is 1.0 mole of gas, what is the maximum temperature reached?

(c) What is the total heat input to the ideal gas from “A → B → C”?
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Problem 2

In the course of pumping up a bicycle tire, one liter of air at atmospheric
pressure is compressed adiabatically to a pressure of 7 atm. (Air is mostly
diatomic nitrogen and oxygen.)

(a) What is the final volume of this air after compression?

(b) How much work is done in compressing the air?

(c) If the temperature of the air is initially 300K, what is the temperature
after compression?



Problem 3

A system consists of N weakly interacting, distinguishable particles, each
of which can be in either of two states with respective energies ε1 and ε2,
where ε1 < ε2.

(a) Without explicit calculation, make a qualitative plot of the mean energy
E of the system as a function of its temperature T . What is E in the
limit of very low and very high temperatures?

(b) Using the result of (a), make a qualitative plot of the heat capacity CV

(at constant volume) as a function of the temperature T .

(c) Calculate explicitly the mean energy E(T ) of this system.

(d) Verify that your expressions exhibit the qualitative features discussed
in (a).

Problem 4

Two identical copper blocks of mass m = 1.5 kg are in a thermally insulated
box, separated by an insulating shutter. One of the blocks is at 60◦C and
the other at 20◦C. The specific heat of copper is 386 J kg−1K−1. (In each
part, show explicitly how you arrived at the answer.)

(a) When we lift the shutter, the blocks eventually come to an equilibrium
temperature Tf . What is this equilibrium temperature Tf?

(b) What are the entropy changes of each block and the entropy change in
the two-block system during this process?

(c) What is the implication of the entropy change in the two-block system
that you just calculated in (b) in terms of reversibility or irreversibility
of the process?

(d) What is the maximum amount of work that could have been extracted
from this system if, instead of placing the two blocks in contact with
each other, they were used as the energy source for an ideal engine?



Problem 5

Consider a monoatomic ideal gas of N atoms of mass m confined in a
volume V = L3 at absolute temperature T . The energy of the molecule is
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~p2

2m
=

h̄2~κ2

2m
,

where ~p denotes its (three component) momentum vector and ~κ the wave
vector. The solution leads to quantum states with
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where nx, ny and nz are 1, 2, 3, . . . . Using the approximations
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it is possible to show that the partition function for a single molecule ζ in

the classical approximation is ζ =
V

h3
(2πmkT )3/2.

(a) Obtain an expression for the chemical potential µ of this gas. You may
use the classical approximation for the partition function taking into
account that the particles are indistinguishable.

(b) A gas of N 0 such weakly interacting particles, adsorbed on a surface
of area A on which they are free to move, can form a two-dimensional
ideal gas on such a surface. The energy of an adsorbed molecule is then
~p2

2m
− ε0 where ~p denotes its (two component) momentum vector and

ε0 is the binding energy which holds the molecule on the surface. Find
the partition function and the chemical potential µ0 of this adsorbed
ideal gas.

(c) At the temperature T , the equilibrium condition between molecules
adsorbed on the surface and the molecules in the surrounding three-
dimensional gas can be expressed in terms of the respective chemical
potentials. What is this equilibrium condition? Use this condition to
find at temperature T the mean number of molecules adsorbed per unit
area (N 0/A) when the mean pressure in the surrounding gas is P .


