
Department of Physics

Preliminary Exam January 3–7, 2011
Day 3: Quantum Mechanics and Modern Physics

Thursday, January 6, 2011

9:00 a.m. – 12:00 p.m.

Instructions:

1. Write the answer to each question on a separate sheet of paper. If more
than one sheet is required, staple all the pages corresponding to a single
question together in the correct order. But, do not staple all problems
together. This exam has five questions.

2. Be sure to write your exam identification number (not your name or
student ID number!) and the problem number on each problem sheet.

3. The time allowed for this exam is three hours. All questions carry the
same amount of credit. Manage your time carefully.

4. If a question has more than one part, it may not always be necessary to
successfully complete one part in order to do the other parts.

5. The exam will be evaluated, in part, by such things as the clarity and
organization of your responses. It is a good idea to use short written
explanatory statements between the lines of a derivation, for example.
Be sure to substantiate any answer by calculations or arguments as
appropriate. Be concise, explicit, and complete.

6. The use of electronic calculators is permissible and may be needed for
some problems. However, obtaining preprogrammed information from
programmable calculators or using any other reference material is strictly
prohibited. The Oklahoma State University Policies and Procedures on
Academic Integrity will be followed.



There are five problems. Answer all five. Each problem carries
20 points. Include all relevant intermediate steps.

You may need these fundamental constants:

h = 2πh̄ = 6.63× 10−34 J s = 4.14× 10−21 MeV s

c = 2.99× 108 m/s

e = 1.60× 10−19 C
Ry = 13.6 eV

me = 9.11× 10−31 kg = 0.511MeV/c2

mp = 1.67× 10−27 kg = 938.27MeV/c2

Problem 1

(a) First, write down the expression for the total relativistic energy, E, of
an electron in terms of its rest mass, me, its momentum, | ~p |, and the
speed of light, c.

(b) A high-energy photon with frequency ν is scattered, after colliding with
an electron initially at rest in the laboratory reference frame, through
an angle of 90◦, as measured in the laboratory frame. Using the above
relativistic expression for the electron energy, as well as conservation of
total energy and momentum, derive an expression for the ratio, ν0

ν of the
final photon frequency, ν0, to the initial photon frequency. This ratio
should be expressed in terms of me, c, ν, and the Planck’s constant, h.
Evaluate ν0

ν if the incident photon energy is 1 MeV.



Problem 2

The Hamiltonian H for a system is given in a certain basis as

H = ≤0




0 −i 0
i 0 2i
0 −2i 0



 .

In the same basis, an operator A corresponding to a certain observable has
the matrix form

A = a0




1 1 0
1 1 0
0 0 −2



 .

(a) If the energy of the system is measured, what are the possible outcomes?

(b) If the system is initially in a state given by

|ψi =
1√
6




1
1
2



 ,

what is the probability that an energy measurement will yield
√

5≤0?
What is the state of the system immediately after such a measurement?
What are the probabilities for energy measurements other than

√
5≤0?

(c) What would be the expectation value of A, if the measurement is done
immediately after measuring the energy of the system to be

√
5≤0?

What would be the variance ∆A in the measurement?



Problem 3

Consider a particle of mass m in a one–dimensional infinite potential well with
a thin wall at the center of the well. The potential energy is given as

V (x) =
Ω
∞, |x| > a
V0 δ(x), |x| < a

where V0 is a positive constant.

(a) Obtain the wave function of the particle inside the well by solving the
time–independent Schrödinger equation and applying the appropriate
boundary conditions. You need not normalize the wave function.

(b) Write down the quantization condition for the momentum of the particle.
Qualitatively describe the structure of energy levels and the corresponding
wave functions and compare them to the case without the central wall
(i.e., the case where V0 = 0).

(c) Determine the relative splitting between the energies of the lowest two

levels, in the case of a large barrier parameter V0 ¿
h̄2

ma
.

Problem 4

(a) In a muonic Hydrogen atom, the electron of an ordinary Hydrogen atom
is replaced by a muon, which is 207 times heavier than the electron. Find
the principal quantum number n such that the wavelength corresponding
to the n+1 to n transition in the muonic Hydrogen atom is the closest to
the wavelength for transition between the two lowest lying energy levels
of an ordinary Hydrogen atom.

(b) One of the atoms in the (ordinary) H2 molecule captures a negative muon
into the n = 3 state. The subsequent n = 3 to n = 2 transition produces
emission of an X-ray and causes the molecule to recoil. Assuming that
the energy lost to vibrational modes in the molecule is negligible, estimate
the Doppler broadening that results from this muon level transition. You
may assume for this estimate that the energy levels for the muon in H2

molecule are approximately the same as the levels in the muonic Hydrogen
atom.



Problem 5

The ground state wave function for a one–dimensional harmonic oscillator
(H = P 2

2m + 1
2mω2X2) is

ψ0(x) =
≥mω

πh̄

¥1/4
e−mωx2/(2h̄)

(a) Verify that ψ0(x) is a solution to the time–independent Schrödinger
equation.

(b) Sketch qualitatively the probability density |ψ0(x)|2 as a function of
x, and indicate on the plot the classically forbidden regions for the
oscillator. Explain why the quantum oscillator can move into the
classically forbidden region. Sketch also (qualitatively) the probability
density of the oscillator in the first excited state.

(c) Consider now adding a small perturbation to the Hamiltonian given
by

H1 = β X4

Assuming β to be small, compute the first order (in β) shift in the
energy En of the system in the state |ni.

Suggestion: For part (c), you may wish to work in the energy basis. Some
useful information:

a|ni =
√

n |n− 1i, a†|ni =
√

n + 1 |n + 1i,

where

a =
r

mω

2h̄

µ
X +

iP

mω

∂
.


