
Department of Physics

Preliminary Exam January 3–7, 2011
Day 4: Thermodynamics and Statistical Physics

Friday, January 7, 2011

9:00 a.m. – 12:00 p.m.

Instructions:

1. Write the answer to each question on a separate sheet of paper. If more
than one sheet is required, staple all the pages corresponding to a single
question together in the correct order. But, do not staple all problems
together. This exam has six questions.

2. Be sure to write your exam identification number (not your name or
student ID number!) and the problem number on each problem sheet.

3. The time allowed for this exam is three hours. All questions carry the
same amount of credit. Manage your time carefully.

4. If a question has more than one part, it may not always be necessary to
successfully complete one part in order to do the other parts.

5. The exam will be evaluated, in part, by such things as the clarity and
organization of your responses. It is a good idea to use short written
explanatory statements between the lines of a derivation, for example.
Be sure to substantiate any answer by calculations or arguments as
appropriate. Be concise, explicit, and complete.

6. The use of electronic calculators is permissible and may be needed for
some problems. However, obtaining preprogrammed information from
programmable calculators or using any other reference material is strictly
prohibited. The Oklahoma State University Policies and Procedures on
Academic Integrity will be followed.



Useful data:

Boltzmann’s constant . . . . .
Gas constant . . . . . . . . . . . .
Unified mass unit . . . . . . . .

k = 1.38×10−23 J/K
R = 8.31 J/mol·K
u = 1.66×10−27kg

Gaussian integrals:
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Problem 1 (15 points)

A system consisting of 2 kg of water at 20◦C is brought in contact with a heat
reservoir at 50◦C. The temperature of the system increases until it reaches
the temperature of the reservoir. Consider the specific heat capacity as a
constant equal to 1 cal g−1K−1 (4.18×103J kg−1K−1 in SI units).

(a) Calculate the heat transferred from the heat reservoir to the system.

(b) Calculate the entropy change in the heat reservoir.

(c) Calculate the entropy change in the system.

(d) What is the entropy change in the universe?

(e) Is this process reversible or irreversible? Justify.



Problem 2 (20 points)

An experiment is performed with 2moles of an ideal gas in an adiabatic
container of 0.5m3 provided with a piston, initially locked in place. A heater
is introduced in the container and the current is switched on at the instant
t = 0 s, dissipating a power of 1W. A thermocouple registers the following
temperature profile as a function of the time since the heater was switched
on:

!

(a) Based on the data presented in the figure above, obtain an estimate for
the heat capacity and for the specific heat capacity at constant volume
for this gas.

(b) If the experiment is repeated with the same initial conditions, but with
the piston unlocked, i.e., able to move in such a way that the pressure is
constant, would the temperature be higher or lower than in the previous
case at t = 200 s? Justify.

(c) Calculate the final temperature of the gas in the situation described in
part (b).

(d) Is this most likely a monoatomic or diatomic gas? Justify your answer.



Problem 3 (20 points)

Please answer the following questions on the properties of a Carnot cycle
and the efficiency of a Carnot engine.

(a) What thermodynamic processes are involved in a Carnot cycle?

(b) Illustrate the Carnot cycle on a P–V diagram and an S–T diagram.
Please label the pairs of corresponding corners with the letters A to D.

(c) In which processes is work put in or extracted?

(d) Derive the efficiency of an engine using the Carnot cycle. Express the
efficiency as a function of temperatures.

Problem 4 (20 points)

Consider a box of volume V containing N gas molecules of mass m, at
temperature T .

(a) Derive the normalized Maxwell distribution of the molecular velocity,
P (vx, vy, vz). Integration of P should equal to N . You may assume
that the velocity components are independent, and that the distribution
depends only on speed or kinetic energy.
You may need to use Boltzmann’s distribution for classical particles.

(b) When a particular solid surface is exposed to this gas, it begins to absorb
molecules at a rate W (molecules · s−1m−2). A molecule has absorption
probability of 0 for a normal velocity component less than a threshold
vT , and absorption probability 1 for a normal velocity greater than vT .
Derive an expression for W simplifying it as far as you can.

(c) Derive Maxwell’s distribution of molecular speed, n(v). You may start
from the Maxwell distribution of velocity in part (a).

(d) Derive the most probable speed from Maxwell’s distribution of molecular
speed.

(e) Calculate the most probable speed for H2 at room temperature.



Problem 5 (15 points)

Consider a system consisting of two particles, each of which can be in any of
one of three quantum states of respective energies 0, ε, and 3ε. The system
is in contact with a heat reservoir at temperature T = (kβ)−1.

(a) Write an expression for the partition function Z if the particles obey
classical Boltzmann statistics and are considered distinguishable.

(b) What is Z if the particles obey Bose-Einstein statistics?

(c) What is Z if the particles obey Fermi-Dirac statistics?

Problem 6 (10 points)

For Fermi-Dirac distribution functions shown in the following figure, order
from small to large (a) the Fermi temperatures and (b) the temperatures of
the three systems. Please justify your solution.


