
Department of Physics
Preliminary Exam January 3–7, 2012
Day 4: Thermodynamics and Statistical Physics

Saturday, January 7, 2012

9:00 a.m. – 12:00 p.m.

Instructions:

1. Write the answer to each question on a separate sheet of paper. If
more than one sheet is required, staple all the pages corresponding to
a single question together in the correct order. But, do not staple all
problems together. This exam has six questions. Select the five you
want graded and mark an “X” through the problem you don’t want
graded.

2. Be sure to write your exam identification number (not your name or
student ID number!) and the problem number on each problem sheet.

3. The time allowed for this exam is three hours. All questions carry the
same amount of credit. Manage your time carefully.

4. If a question has more than one part, it may not always be necessary
to successfully complete one part in order to do the other parts.

5. The exam will be evaluated, in part, by such things as the clarity and
organization of your responses. It is a good idea to use short written
explanatory statements between the lines of a derivation, for example.
Be sure to substantiate any answer by calculations or arguments as
appropriate. Be concise, explicit, and complete.

6. The use of electronic calculators is permissible and may be needed
for some problems. However, obtaining preprogrammed information
from programmable calculators or using any other reference material is
strictly prohibited. Oklahoma State University Policies and Procedures
on Academic Integrity will be followed.



Do only five (5) (any five) of the six problems.
Mark an “X” through the problem you don’t want graded.

Each graded problem carries 20 points.

Boltzmann’s constant:
Gas constant:
Unified mass unit:

kB = 1.38× 10−23 J/K
R = 8.31 J/(mol·K)
u = 1.66× 10−27 kg
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Problem 1

(a) From macroscopic thermodynamics, show that:

U = F − T
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(b) From statistical thermodynamics, show that:
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(c) Comparing the above results, deduce the relation between the Helmholtz
free energy (F ) and the canonical partition function (Q).



Problem 2

Entropy for system of identical noninteracting fermions.

(a) Derive, from an appropriate partition function, the following general
expression for the entropy of a system in thermodynamic equilibrium
made up of identical, noninteracting fermions (e.g., a free-electron ideal
gas):

S = −
X

i

kB

∑
fi ln fi + (1− fi) ln(1− fi)

∏
,

where

fi ≡
1

e(εi−µ)/kBT + 1
(Fermi–Dirac distribution)

and the sum is over all single-particle states (labeled by i). All symbols
have their usual meanings.

(HINT: Grand canonical partition function, written for a particular
single-particle state i of energy εi.)

(b) Let Si ≡ −kB [fi ln fi + (1− fi) ln(1− fi)] denote the entropy of just
the ith single-particle state by itself. (Obviously, S =

P
i Si.) Evaluate

Si for the following cases:
• fi = 0
• fi = 1
• Can Si ever be < 0? What is the value of Smax

i ?

(c) Interpret the meaning of the results in part (b).

(d) Without doing additional calculation: What would the total entropy,
S, be for the case where the occupancy (0 or 1) of each single-particle
quantum state is known with certainty? Can you give a physical
example which well approximates such a situation? What happens
to S when one or more occupancies become uncertain?



Problem 3
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Heat engine. The Brayton cycle is shown in the S-P diagram. Assume
that the working substance is an ideal gas.

(a) Show which is/are the heat absorbing process(es), and determine the
amount of heat absorbed;

(b) Show which is/are the heat expelling process(es), and determine the
amount of heat expelled;

(c) Calculate the efficiency of the cycle expressed in pressures PA and PB

and heat capacities CP and CV .

(d) Draw the P -V diagram of the cycle (V as x-axis). Label the corners
with letters A–D consistent with the ones given in the S-P diagram.

(e) Draw the T -S diagram of the cycle (S as x-axis).



Problem 4

Application of Maxwellian distribution. The speed of O2 molecules
in a container follows the Maxwell distribution f(v) ∝ v2e−mv2/2kT . The
number of molecules with speed v that hit the wall in a given time is
proportional to the speed v and to f(v). Assuming there is a very small
hole in the wall (too small to affect the distribution inside), the speed
distribution of those molecules that escape is F (v) ∝ v f(v).

(a) Calculate the average speed for O2 molecules inside the box, assuming
T = 300K.

(b) Calculate the average speed for the O2 molecules that escape. How
does this compare to the average speed of molecules inside the box?
Justify your result.

(c) Calculate the mean translational kinetic energy of those that escape.
How does this energy compare to the mean translational kinetic energy
for molecules inside the box as predicted by the equipartition theorem?
Also justify your result.



Problem 5
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Model of polarizability on a lattice. The following describes a simple
two-dimensional model of a situation of actual physical interest.

A solid at temperature T contains N negatively charged impurity ions
per cm3, these ions replacing some of the ordinary atoms of the solid. The
solid as a whole is, of course, electrically neutral. This is so because each
negative ion with charge −e has in its vicinity one positive ion with charge
+e. The positive ion is small and thus free to move between the lattice
sites.

In the absence of an external electric field it will, therefore, be found
with equal probability in any one of the four equidistant sites surrounding
the stationary negative ion (see diagram; the lattice spacing is a).

If a small electric field E is applied along the x direction, calculate:

(a) The probability that the positive ion will be in one of the right-side
positions.

(b) The electric polarization, i.e., the mean electric dipole moment per unit
volume along the x direction.

(c) What is the expected value of the electric polarization when the tem-
perature is very low or very high?

Additional information:

• Electric dipole moment is p=qr, where r is the vector position from the negative to the

positive charge and q is the charge of the electron.

• Energy of an electric dipole in an electric field is ε=−p·E.



Problem 6

Lattice vibrations in the Einstein model. A crystalline solid can be
modeled as an assembly of 3N identical, independent harmonic oscillators.
The molecular partition function for each oscillator is given by:

ζ = (1− e−θE/T )−1

where θE is a relevant Einstein temperature.

(a) Determine the canonical partition function for this solid.

(b) Derive suitable relations for its internal energy and entropy.

(c) What is the chemical potential for this crystalline solid?


