
Department of Physics

Preliminary Exam January 2–5, 2013

Day 4: Thermodynamics and Statistical Physics

Saturday, January 5, 2013

9:00 a.m. – 12:00 p.m.

Instructions:

1) Write the answer to each question on a separate sheet of paper. If
more than one sheet is required, staple all the pages corresponding to
a single question together in the correct order. But, do not staple all
problems together. This exam has six questions. Select the five you
want graded and hand in a paper marked with an “X” for the problem
you don’t want graded.

2) Be sure to write your exam identification number (not your name or
student ID number!) and the problem number on each problem sheet.

3) The time allowed for this exam is three hours. All questions carry the
same amount of credit. Manage your time carefully.

4) If a question has more than one part, it may not always be necessary
to successfully complete one part in order to do the other parts.

5) The exam will be evaluated, in part, by such things as the clarity and
organization of your responses. It is a good idea to use short written
explanatory statements between the lines of a derivation, for example.
Be sure to substantiate any answer by calculations or arguments as
appropriate. Be concise, explicit, and complete.

6) The use of electronic calculators is permissible and may be needed
for some problems. However, obtaining preprogrammed information
from programmable calculators or using any other reference material is
strictly prohibited. Oklahoma State University Policies and Procedures
on Academic Integrity will be followed.



Do only five (5) (any five) of the six problems.

Hand in a paper marked with an “X”
for the problem you don’t want graded.

The five graded problems all carry equal weight.

Boltzmann’s constant:

Gas constant:

Unified mass unit:

kB = 1.38 × 10−23 J/K

R = 8.31 J/(mol·K)

u = 1.66 × 10−27 kg
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Problem 1

Good quality vodka consists of 50% ethyl alcohol and 50% water by volume
(bad quality vodka contains additional nasty stuff). How much profit per
liter would you make if you purchased the vodka at a cost of $10.00 per
liter at 0◦C and sold it at $10.00 per liter at 25◦C? The coefficient of
volume expansion of ethyl alcohol is 7.5×10−4 ◦C−1, while that for water is
2.1×10−4 ◦C−1.

Problem 2

Write down the Maxwell–Boltzmann, Bose–Einstein, and Fermi–Dirac
distribution functions. Sketch a plot of these three distributions, n(E)
as a function of E/kT from 0 to 5 and a degeneracy constant of α = −1,
(α ≡ −µ/kT ). Name the defining characteristics of the particles/systems
described by each type of distribution. Compare the three functions for
E ≪ kT and for E ≫ kT .



Problem 3

The device shown in the figure was used in 1925 by Otto Stern to verify
Maxwell’s distribution of molecular speeds. A beam of Bi2 molecules (atomic
mass of Bi m = 208.98040 u, u = 1.660539× 1027 kg) emitted from an oven
at 850 K. The beam defined by slit S1 was admitted into the interior of
a rotating drum via slit S2 in the drum wall. The identical bunches of
molecules thus formed struck and adhered to a curved glass plate fixed to
the interior drum wall, the fastest molecules striking near A, which was
opposite to S2, the slowest near B, and the others in between depending on
their speeds. The density of the molecular deposits along the glass plate was
measured with a densitometer. The density (proportional to the number
of molecules) plotted against distance along the glass plate (dependent on
v) made possible determination of the speed distribution. Assume that the
drum is 10 cm in diameter and is rotating at 6250 rpm.

(a) Find the distance from A where molecules traveling at the most probable
speed vm, the average speed 〈v〉, and the rms speed vrms will strike.

(b) The plot in (a) must be corrected slightly in order to be compared with
Maxwell’s distribution equation. Why?



Problem 4

In MRI (magnetic resonance imaging), a medical imaging technique used
in hospitals to visualize internal structures of the body in detail, proton
nuclear magnetization of water molecules is detected. In the absence of an
external magnetic field, the proton spins are randomly oriented, resulting in
zero macroscopic magnetization. When a magnetic field B = (0, 0, 7) Tesla
is applied, proton spin angular momentum S (and magnetic moment µ)
align with the field, splitting energy into two levels (spin quantum number
s = 1/2). For a sample containing 9 g of H2O at 300 Kelvin:

(a) Calculate the number of protons in the spin-up state (magnetic quantum
number m = 1/2) and in the spin-down state (m = −1/2).

(b) Calculate the total magnetization (i.e. the net magnetic moment) due
to protons in the sample, which is the source of the MRI signal.

Data for Problem 4

µ = γS

U = −µ·B = −γBSz = −mh̄γB, m = ±1

2

γ = 2.675222005× 108 rad s−1T−1

NA = 6.0221415 × 1023 /mol

h̄ = 1.054572 × 10−34 J·s

k = 1.380650 × 10−23 J/K



Problem 5

A simple system is described by an alternative to the van der Waals equation
of state, namely the first Dieterici equation

P =
RT

v − b
exp

(

−
a

RTv

)

,

together with the Maxwell construction.

(a) Describe in a few sentences and one or two simple sketches what the
Maxwell construction is.

(b) Which equations need to be solved to determine the critical point?

(c) Solve for the critical parameters vc, Tc, and Pc.

(d) Calculate the thermal expansion coefficient α by solving dP = 0.

(e) Derive the relation Tα = 1 determining the inversion curve.

(f) Solve this simple equation, giving T as a function of v.

(g) Determine the inversion temperature Ti, i.e. the maximum value of T
on this inversion curve, usually occurring in the limit v → ∞.

Problem 6

Calculate the free energy per spin of a paramagnet with interaction energy

H = −B
Ñ

∑

j=1

σj ,

with σj = ±1. As a function of the scaled magnetic field B is this a
convex or concave function? Calculate the total magnetization M and its
fluctuation ∆M2,

M ≡
〈

∑
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〉

, ∆M2 ≡
〈(

∑

σj − M
)2〉

,

as functions of Ñ and discuss on the basis of this how fluctuations can be
ignored in the thermodynamic limit.


