Department of Physics
Preliminary Exam: January 6-10, 2014

Day 4: Thermodynamics and Statistical Physics

Friday, January 10, 2014
9:00 a.m.—12:00 p.m.

Instructions:

1.

Write the answer to each question on a separate sheet of paper. If more
than one sheet is required, staple all the pages corresponding to a single
question together in the correct order. But, do not staple all problems
together. This exam has five questions.

Be sure to write your exam identification number (not your name or
student ID number!) and the problem number on each problem sheet.

The time allowed for this exam is three hours. All questions carry the
same amount of credit. Manage your time carefully.

If a question has more than one part, it may not always be necessary to
successfully complete one part in order to do the other parts.

The exam will be evaluated, in part, by such things as the clarity and
organization of your responses. It is a good idea to use short written
explanatory statements between the lines of a derivation, for example.
Be sure to substantiate any answer by calculations or arguments as
appropriate. Be concise, explicit, and complete.

The use of electronic calculators is permissible and may be needed for
some problems. No other electronic device is permitted. Obtaining
preprogrammed information from programmable calculators or using
any other reference material is strictly prohibited. The Oklahoma State
University Policies and Procedures on Academic Integrity will be fol-
lowed.



Attempt all five problems. FEach graded problem carries 20 points.

Boltzmann’s constant: kg = 1.38 x 1073 J/K
Gas constant: R = Npkp = 8.31J/(mol-K)
Unified atomic mass unit: uw=1.66x 10" kg

Gaussian integrals:
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Problem 1

One mole of a monatomic ideal gas is taken from an initial state of pressure
Py and volume V| to a final state of pressure 2F, and volume 2V} via two
different processes:

I[. Tt expands isothermally until its volume is doubled, and then its pressure
is increased at constant volume to the final state.

II. It is compressed isothermally until its pressure is doubled, and then its
volume is increased at constant pressure to the final state.

(a) Show the path of each process on a P-V diagram.

(b) For each process, calculate the heat absorbed by the gas in terms of B
and Vj.

(c¢) For each process, calculate the work done on the gas in terms of Py and
Vo.

(d) For each process, calculate the change in internal energy of the gas in
terms of P, and Vj.

(e) For each process, calculate the change in entropy of the gas in terms of
Py and V4.



Problem 2

Consider N particles obeying classical statistics that have energies distributed
in two levels g9 and g+ 0 (§ > 0).

a) Determine the partition function and free energy for the system.

(a)

(b) Determine the entropy.

(c¢) Determine the specific heat as a function of temperature, C(T).
)

(d) Find the leading low-temperature and high-temperature behaviors of the
specific heat and sketch a C—T' plot.

Problem 3

Air in the middle levels of the atmosphere falls to the earth surface because
of evaporative cooling, which can be understood in the following model.
Consider an ideal gas system consisting of Ny monatomic particles, each
having mass m. The gas is contained in a cubic box of side L and the
temperature is 1.

(a) What is the normalized speed distribution of the gas? Derive the ex-
pression for the most probable speed.

(b) Derive the normalized distribution of kinetic energy. What is the most
probable energy per particle?

(c) What is the average energy per particle?

(d) Instantaneously remove all particles from the system that have kinetic
energy higher than nkgT (n is an arbitrary positive real number). How
does the temperature change? Qualitative explanation is sufficient.



Problem 4

Calculate the cost of producing one ton (1000 kg) of ice at —10°C starting with
water at room temperature (20°C) and assuming that the cost of electricity
is 12 cents per kWh. Solve this problem by answering the following questions
using the data below:

(a) How much energy must be extracted from the water in cal and in kWh?
What dollar amount would that represent at $0.12 per kWh?

(b) What would the cost be using a perfect reversible refrigerator?

Data: Specific heat of water = 1.00 cal/gram-°C
Specific heat of ice = 0.500 cal/gram-°C (Ical =4.186J)
Latent heat of fusion (melting) = 80.0 cal/gram



Problem 5

A large number N of spinless noninteracting bosons is confined to a cubic
box of macroscopic size V = L? (with boundary z, y, or z = 0 or L) and in
equilibrium at absolute temperature 7'.

(a) Write (without giving a detailed derivation) a formula for the complete
set of solutions of the one-particle Schrodinger equation with nodes at
the boundary that have energies

h2m?
" omL?

£ (ng +n, +n2).

What are the allowed values of n = (n,,n,,n.)?

(b) Expand the grand canonical partition function Zg (8, u, V') (with p the
chemical potential and § = 1/kgT), as a product over n, simplifying
the expression for the factors within the product by performing the sum
over the occupation number of each one-particle state n.

(c) For very large V', we can replace the sum over n by an integral. Show
that this leads to the density of states

D(e) = (2‘;)2 (?)3/2 c1/2.

PV
(d) Apply this to i log Zy, while treating the term n = (1,1,1)
B

separately.
(e) Derive from the previous result an expression for (N).

(f) What are the physical consequences related to the term n = (1,1, 1)?



